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A B S T R A C T

Automatic programming (AP) is a subfield of artificial intelligence (AI) that can automatically generate
computer programs and solve complex engineering problems. This paper presents the accuracy of four different
AP methods in predicting the aerodynamic coefficients and power efficiency of the AH 93-W-145 wind
turbine blade at different Reynolds numbers and angles of attack. For the first time in the literature, Genetic
Programming (GP) and Artificial Bee Colony Programming (ABCP) methods are used for such predictions.
In addition, Airfoil Tools and JavaFoil are utilized for airfoil selection and dataset generation. The Reynolds
number and angle of attack of the wind turbine airfoil are input parameters, while the coefficients 𝐶𝐿, 𝐶𝐷
and power efficiency are output parameters. The results show that while all four methods tested in the study
accurately predict the aerodynamic coefficients, Multi Gene GP (MGGP) method achieves the highest accuracy
for 𝑅2

Train and 𝑅2
Test (𝑅2 values in 𝐶𝐷 Train: 0.997-Test: 0.994, in 𝐶𝐿 Train: 0.991-Test: 0.990, in 𝑃𝐸 Train:

0.990-Test: 0.970). By providing the most precise model for properly predicting the aerodynamic performance
of higher cambered wind turbine airfoils, this innovative and comprehensive study will close a research gap.
This will make a significant contribution to the field of AI and aerodynamics research without experimental
cost, labor, and additional time.
. Introduction

Over the past decade, severe constraints on pollution and global
limate change have been observed due to restrictions on fossil fuel us-
ge. These constraints have led to increased interest and abrupt growth
n the use of energy associated with renewable energy sources such
s hydropower, onshore and offshore wind, geothermal, solar, wave
nd tidal energy (Abdmouleh et al., 2015). Among renewable energy
ources, wind power enjoys a better reputation than other renewable
nergy sources because it offers advantages in many respects, including
nergy cost and technological maturity. As a result, many countries
ave set a goal to generate electricity from wind energy. In this context,
he wind energy sector plays a major role in conjunction with its
nnovative design methods such as the increasing size of wind turbines
nd the optimization of wind turbine blades (Huang et al., 2017). On
he other hand, aerodynamic performance, which takes into account
he aerodynamic design of wind turbine blades, has become a favorite
opic in the industry.

The lift coefficient (𝐶𝐿) and drag coefficient (𝐶𝐷) are the most
mportant parameters in determining the aerodynamic performance of

wind turbine blade (Papadimitriou and Papadimitriou, 2016; Genc
t al., 2019). These aerodynamic coefficients can vary depending on

∗ Corresponding author.
E-mail addresses: sibelarslan@cumhuriyet.edu.tr (S. Arslan), kemal.koca@agu.edu.tr (K. Koca).

model geometry (Karasu et al., 2020), different flow characteristics (Be-
lamadi et al., 2016), and angle of attack (Elsakka et al., 2019). There-
fore, researchers have conducted numerous studies to identify them.
Kawazoe and Morita pointed out that 𝐶𝐿 and 𝐶𝐷 increase as the
distance between the ground and the pressure surface of the blade
profile decreases (Kawazoe and Morita, 2004). They also investigated
flexible blades to increase the 𝐶𝐿 coefficient, which led to an increase in
wind power performance (MacPhee and Beyene, 2019; Descoteaux and
Olivier, 2021). In addition, the effects of local flexible membrane mate-
rial mounted over suction surfaces of airfoil have been experimentally
studied to increase wind turbine blade performance and reduce noise
and vibration (Genç et al., 2020; Koca et al., 2022c,d,b; Genç et al.,
2022a; Koca et al., 2022a). Some researchers have also studied flow
phenomena such as the formation of a laminar separation bubble (LSB)
at the boundary layer separation, and experimentally investigated how
the 𝐶𝐿 and 𝐶𝐷 coefficients are affected by these parameters (Koca et al.,
2022b; Genç et al., 2022a; Koca et al., 2022a; Wahidi and Bridges,
2009; Koca et al., 2018; Genç et al., 2022b). Because these studies
so far have conducted using experimental techniques such as pressure,
velocity, and aerodynamic force measurements. The experimental cost,
labor, and time required for the studies are high. For this reason,
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aerodynamic researchers have begun to take interest in numerical or
theoretical simulations. The use of artificial intelligence (AI) methods
in these applications has gradually gained acceptance. One such study,
which plays an important role, predicted the aerodynamic coefficients
of a delta wing using an artificial neural network (ANN) (Tumse
et al., 2022). Another study, using ANN, estimated the aerodynamic
performance of an airfoil with flow control mechanism (Akbıyık and
Yavuz, 2021).

As outlined above, a number of studies have investigated the predic-
tion of aerodynamic coefficients for flight vehicles; however, there are
still considerable gaps in the literature, particularly when it comes to
using and testing advanced AI methods. These methods outperformed
state of art algorithms in solving various engineering problems in many
studies (Xing et al., 2022a,b). In addition, automatic programming (AP)
methods such as Genetic Programming (GP) and Artificial Bee Colony
Programming (ABCP), which can automatically generate computer pro-
grams among the methods, have begun to attract more and more
attention from AI researchers. Because of their flexible and comprehen-
sible forms, GP and ABCP are used in a variety of applications, such as
image segmentation (Yuan et al., 2022), parameter tuning (Stanovov
et al., 2022), project scheduling (Luo et al., 2022), estimation (Emeksiz,
2022; Moradkhani et al., 2021), prediction (Sattar et al., 2022; Arslan
and Öztürk, 2019; Hosseini et al., 2021; Bouaziz et al., 2016), symbolic
regression (Karaboga et al., 2012; Arslan and Ozturk, 2019b; Gorkemli
and Karaboga, 2019), modeling (Kütük and Arslan, 2022) and feature
selection (Arslan and Ozturk, 2019a).

The main motivations for preferring the AP methods in this study
are as follows:

• The prediction problem of aerodynamic coefficients, which we
aim to solve, has limited information. In the literature, AP meth-
ods based on random processes have been shown to propose
successful models for different real-world problems with limited
information (Stanovov et al., 2022; Sattar et al., 2022; Arslan and
Ozturk, 2019b).

• AP methods can describe the relationship between input and out-
put parameters in problems generating nonlinear mathematical
formulas. These formulas allow us to determine the effectiveness
of the inputs to the problem and the quality of the relationship.
Many state of art algorithms, such as metaheuristics and ANN, do
not have this property.

• The methods give faster and more efficient results and saves high
experimental cost, labor and time for predicting the coefficients.

• In the literature, AP methods have been shown to have higher
performance in prediction problems compared to conventional
algorithms such as ANN (Desai and Shaikh, 2012; Salmasi et al.,
2013).

• To the best of our knowledge, there are no studies and researches
in the literature for predicting the aerodynamic coefficients of a
more cambered wind turbine airfoil using AP methods.

A further aim of the present study is to investigate the best AP
method for predicting the aerodynamic coefficients of AH 93-W-145
wind turbine blade. First, we used GP, ABCP and their Multi Gene
GP (MGGP) and Multi Hive ABCP (MHABCP) versions to propose new
models and then compare the methods based on different performance
criteria. The present study is also a pioneer in comparing the success
of MGGP and MHABCP. Briefly, there is a research gap of utilizing
AI techniques in engineering application especially at aerodynamic
research. As mentioned above, this pioneering and detailed study will
fill research gap by proposing the most accurate model in terms of
correctly prediction of aerodynamic performance of more cambered
wind turbine airfoil. This will lead major contribution to the researchers
who interested in aerodynamics and AI.

The remainder of this paper is organized as follows: Section 2
explains the methods, and Section 3 presents performance evolution

criteria, parameters, and datasets. Simulation results are discussed

2

Fig. 1. The sketch of aerodynamic forces on AH 93-W-145 wind turbine airfoil.

in Section 4. Section 5 gives a general evaluation of the study and
mentions the limitations of the methods. The concluding part of the
study is ensured in Section 6.

2. Methods and methodology

2.1. Dataset collection

This section explains data collection process, lift (𝐹𝐿) and drag (𝐹𝐷)
forces of the AH 93-W-145 wind turbine blades, which are used for the
root part of commercial wind turbine blades, were collected and are
presented in Fig. 1.

Airfoil Tools1 and JavaFoil2 were used to select the airfoils and
acquire the dataset for the AP methods. A panel approach is used by the
free program JavaFoil to resolve the velocity and pressure environment
surrounding aerodynamic airfoils. This program effectively predicts the
aerodynamic behavior of an optimized airfoil geometry at low angles of
attack by combining the potential flow approach with a boundary layer
analysis (Meana-Fernández et al., 2020). The following steps should
be followed to get the airfoil polars: Airfoil and its coordinates can be
determined thanks to Airfoil Tools. The coordinated of selected airfoils
is then introduced in JavaFoil.

The computations are initiated once the analysis’s airfoil Reynolds
number and range of angles of attack are given. With those inputs, the
program immediately returns the 𝐶𝐿 and 𝐶𝐷 values for each angle of
attack. Each dataset is distinguished by a Reynolds number, which is
based on the airfoil chord and identified as follows:

𝑅𝑒 =
𝜌𝑈∞𝑐
𝜇

(1)

which 𝜌 is air density, 𝑈∞ is the flow velocity, 𝑐 is the chord length
of selected airfoil, and 𝜇 is the dynamic viscosity. Furthermore, after
determination of selected wind turbine airfoil thanks to Airfoil Tools,
the lift (𝐶𝐿) and the drag (𝐶𝐷) coefficients as well as power effi-
ciency (Bleischwitz et al., 2015) are calculated by means of JavaFoil
with the following equations, respectively:

𝐶𝐿 =
𝐹𝐿

0.5𝜌𝑈2
∞𝑆

(2)

1 http://airfoiltools.com/
2 https://www.mh-aerotools.de/airfoils/javafoil.htm

http://airfoiltools.com/
https://www.mh-aerotools.de/airfoils/javafoil.htm
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Fig. 2. The structure of proposed AP methods.
𝐶𝐷 =
𝐹𝐷

0.5𝜌𝑈2
∞𝑆

(3)

Power Efficiency (𝑃𝐸) =
𝐶3∕2
𝐿
𝐶𝐷

(4)

here 𝑆 is the surface area of selected airfoil. Related to the dimensions
f airfoil, its chord length and span length were 200 mm and 300 mm,
espectively. Related to the input data limitations, the angle of attack
as limited as 0◦ ≤ a ≤ 20◦. It was varied with 2◦ intervals. The flow
elocities 𝑈∞ were 6.5 m/s, 9.6 m/s and 13.2 m/s which corresponding
o Reynolds number of 0.7×105, 1.05×105 and 1.4×105, respectively. For
he output parameters, 𝐶𝐿 was varied from 0.05 to 1.3, 𝐶𝐷 was varied
rom 0.13 to 0.425 and power efficiency was differed from 0.175 to
.7.

.2. Overview of AP methods

As mentioned earlier, we employed four AP methods to predict the
erformance of the AH 93-W-145 wind turbine blade. Two of these
ethods, Multi Gene GP (MGGP) and Multi Hive ABCP (MHABCP), are

dvanced versions of GP and ABCP respectively. To provide a clear
nderstanding of the results, we first present the basic principles of
P and ABCP, and then delve into the specific features of MGGP and
HABCP.

.2.1. GP and ABCP
In Fig. 2, the structure of the AP methods is illustrated, showing

hat the input parameters used are the angle of attack and Reynolds
umber, and the output parameters predicted aerodynamic properties
uch as the lift coefficient, drag coefficient, and power efficiency.

Cramer (1985) applied a tree approach similar to the first modern
pplication to Markov decision processes. Koza (1994) showed that
he relationship between dependent and independent parameters of
ystems can be determined by using GP without the need for an initial
odel. GP is inspired by GA, and the main difference between these

wo algorithms is the representation of chromosomes. Another trend
n GP-like method is ABCP, which is based on swarm intelligence and
imulates the foraging behavior of honeybees. It uses similar algorithm
teps as Artificial Bee Colony (ABC) (Karaboga et al., 2012). Many
ecent studies have shown that ABCP is robust and practical compared
o other AI methods (Karaboga et al., 2012; Arslan and Ozturk, 2019b;
orkemli and Karaboga, 2019; Arslan and Ozturk, 2019; Nekoei et al.,
021). Similar to the two methods in GP and ABCP, the solutions are
epresented by computer programs in tree structure. These computer
rograms consist of various combinations of terminals and functions
pecific to the problem (Poli et al., 2008). A tree structure that could
epresent a solution in both methods is shown in Fig. 3.

As shown in Fig. 3, the tree structure of the solution includes
erminals such as constants, parameters, and functions such as arith-
etic, mathematical and logical functions. The specific terminals and

unctions used in the solution may vary depending on the problem type.
3

Fig. 3. Example of tree solution in GP and ABCP.

The mathematical relationship of the solution is represented in Eq. (5).
In this equation, the independent parameters are (𝑥1, 𝑥2), the constant
is (5.2), and the dependent parameter is 𝑓

(

𝑥1, 𝑥2
)

.

f
(

𝑥1, 𝑥2
)

=
𝑥2
5.2

+ 𝑥1 (5)

In addition to representing the solutions of individuals in the tree
structure, GP and ABCP also improve the solutions with similar op-
erators. Karaboga et al. (2012) adapted the crossover operator in GP
to ABCP, known as an ‘‘information sharing mechanism’’. An example
of a crossover/information sharing mechanism operator can be seen
in Fig. 4. The operator replaces a randomly selected subtree from the
candidate solution with a randomly selected subtree from the neighbor-
ing solution. In ABCP, the neighborhood solution is different from the
candidate solution. The generated candidate solution is expected to be
a better solution according to the mechanism.

Besides the crossover operator, operators such as mutation and re-
production are also used in GP to improve the solutions. The flowcharts
of GP and ABCP are shown in Fig. 5 and Fig. 6 respectively. The first
step in the flowchart of GP is to generate the initial population. The
individuals in the population can be generated by different methods,
e.g., Full, Grow, or Ramp Half and Half (Nekoei et al., 2021). The
selection, crossover and mutation operators in GA are adapted to GP
to improve existing solutions and search for new ones. The selection
operator is also used to evaluate the fitness of each individual in
the population based on the objective function value of the problem.
Individuals with good fitness are more likely to be found in the next
generation, but individuals with low fitness values are also more likely
to be found. Methods such as the selection operator, the roulette wheel,
and the tournament method are used to improve the population.

Depending on the fitness value of the crossover operator, two par-
ents are selected from the population. Generally, the crossover points
for both parents are determined randomly. As shown in Fig. 4, the
subtrees of the two crossover points in the individuals are replaced and
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Fig. 4. Example of crossover in GP/information sharing mechanism in ABCP. (a) candidate solution (b) neighborhood solution (c) received subtree from the neighborhood solution
(d) generated candidate solution.
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new individuals are generated. The mutation point or node is randomly
determined by the individual in the mutation operator. A randomly
generated tree or node is placed at the location of the node selected
from the tree. The operator makes it possible to find new, unprece-
dented and unexplored solutions (Poli et al., 2008). The best solutions
of the previous generation are passed on to the current generation
in elitism. The program is then terminated according to predefined
termination criteria when the solutions have reached a certain fitness
value and the program has reached the maximum number of iterations.

The most important change made in adapting the ABC algorithm to
ABCP is the neighborhood mechanism in the generation of candidate
solutions, called the information sharing mechanism, shown in Fig. 4.
At the same time, it has the same algorithm steps as the ABC. In
the ABCP, there are three different types of bees: (i) employed bees,
(ii) onlooker bees, and (ii) scout bees. Employed bees leave the hive
and have a specific food source in their memory (Karaboğa, 2014).
When they return to the hive, they share the information about the
food source with the onlooker bees. The onlooker bees decide which
source they will go to depending on how much nectar is available in
the source shared by the employed bees. During the scout bee phase,
 T

4

they check to see if all food sources are exhausted. If the food source
is exhausted, the source is abandoned. The bees that officially worked
with an abandoned source become scout bees and randomly search
for a new source. Unlike other bees, scout bees find new food sources
without passing on information. The exhaustion of food resources is
controlled by a parameter called 𝑙𝑖𝑚𝑖𝑡. For each source the number of
improvement attempts is recorded and in each cycle, it is checked if
the number of attempts exceeds the 𝑙𝑖𝑚𝑖𝑡.

.2.2. MGGP and MHABCP
MGGP is a widely used version of GP and represents solutions with

ulti-tree structures of low depth. MHABCP, on the other hand, is an
BCP based high-level AP method that aims to build reliable models

or high-dimensional symbolic regression problems. Similar to MGGP,
he solutions in MHABCP also have a multi-tree structure. In GP, each
ree in the solution is referred to as a gene, and in MHABCP, it is called
hive. The mathematical formula of the solution results from the linear

ombination of the subtrees. An example of a solution with subtrees of
ow depth that can be generated by both algorithms is shown in Fig. 7.
he formula for the solution is given in Eq. (6). In Eq. (6), a coefficient
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Fig. 5. The flow chart of GP algorithm.

s added to the partial equation of each tree. Additionally, 𝑤0 is a
ias. The maximum number of trees that can be found in a solution
s expressed by the maximum number of genes (𝐺𝑚𝑎𝑥) in MGGP and

the maximum number of hives (𝐻𝑚𝑎𝑥) in MHABCP.

f
(

𝑥1, 𝑥2
)

= 𝑤0 +𝑤1
((

sin
(

𝑥1
)

∗ 𝑥2
)

−
(

𝑥1 + 5.2
))

+𝑤2

(

cos
(

𝑥2
)

+ 6.4

log
(

𝑥1
)

)

(6)

In addition to the crossover/information sharing mechanism in
these algorithms, there is a new operator that allows individual tree
structures to change places within themselves. This operator is called
high-level crossover in MGGP, while in MHABCP it is called the hive
exchange mechanism. The operator performs an evolution, as shown
in Fig. 8. It should be noted that the trees are exchanged and pruned ac-
cording to the predefined maximum number of trees. The mathematical
formula for a solution in both algorithms is calculated by Eq. (7).

𝑥𝑖 = 𝑤𝑖0 +
𝑘
∑

𝑗=1

(

𝑤𝑖𝑗 ∗ 𝑇𝑖𝑗
)

(7)

where 𝑥𝑖 is the ith solution in the population, 𝑤𝑖0 is the initial weight
(bias), 𝑤𝑖𝑗 is the weight of the jth tree for solution i, 𝑇𝑖𝑗 is the jth tree
defined for the ith solution.

3. Experimental design

In this section, the datasets of AH 93-W-145 wind turbine blade are
explained and the experimental setup, such as the fitness functions and
parameters, are examined.
 d

5

Table 1
Parameters.

Parameters GP ABCP MGGP MHABCP

Population Size 250 – 250 –
Colony Size – 250 – 250
Generation 250 250 250 250
Maximum Tree Depth 10 10 5 5
Crossover Rate 0.84 – 0.84 –
Mutation Rate 0.14 – 0.14 –
Direct Reproduction Rate 0.02 – 0.02 –
Tournament size 6 – 6 –
Limit – 50 – 50
Maximum Number of Hive – – 4 4
Information Sharing Mechanism Rate – 1 0.8 0.8
Hive Exchange Mechanism Rate – – 0.2 0.2
Functions +, −, * ,/ (protected), 𝑠𝑞𝑢𝑎𝑟𝑒, 𝑐𝑢𝑏𝑒

3.1. Performance evolution criteria

The AP methods are evaluated by using six different performance
evolution criteria. These functions are as follows:

• Sum Squared Error (SSE): It is illustrated in Eq. (8).

𝑆𝑆𝐸 =
𝑁
∑

𝑖=1

(

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
)2 (8)

• Root Mean Square Error (RMSE): It is given in Eq. (9).

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
)2 (9)

• Mean Absolute Error (MAE): It is shown in Eq. (10).

𝑀𝐴𝐸 =

∑𝑁
𝑖=1

|

|

|

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
|

|

|

𝑁
(10)

• Mean Square Error (MSE): It is presented in Eq. (11).

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
)2 (11)

• Mean Absolute Percentage Error (MAPE): It is given in Eq. (12).

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

|

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
𝑌𝑖

|

|

|

|

|

(12)

• Symmetric Mean Absolute Percentage Error (SMAPE): It is given in
(13).

𝑆𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝑓
(

𝑥𝑖
)

− 𝑌𝑖
|

|

|

(

|

|

𝑌𝑖|| +
|

|

|

𝑓
(

𝑥𝑖
)

|

|

|

)

∕2
(13)

here 𝑁 is the number of samples, 𝑓
(

𝑥𝑖
)

denotes the predicted output
f models generated by the methods, 𝑌𝑖 is the actual output parameter.
he complexity of the solution trees is calculated as a function of the
odes’ number and the depth of the trees by where 𝐶 is the complexity
f the solution, 𝑑 is the depth of the solution, and 𝑛 is the total number
f nodes in the corresponding depth of the solution.

.2. Parameters

The parameters used by the methods in all runs are listed in Table 1.
o ensure a fair comparison, the same settings were used for the param-
ter values of both GP and MGGP, as well as ABCP and MHABCP. The
nitial solutions were generated using the ramped half and half method
or all methods. To improve the solutions, crossover, mutation and
irect reproduction operators were used in GP, while an information
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Fig. 6. The flow chart of ABCP algorithm.
Fig. 7. Example of multi-tree structure in MGGP and MHABCP.
sharing mechanism was used in ABCP. Additionally, GP and MHABCP
also employed a high-level crossover/hive exchange mechanism at a
rate of 0.2.

The function of 𝑠𝑞𝑢𝑎𝑟𝑒 in Table 1 is used to represent the square of
a number, while the function of 𝑐𝑢𝑏𝑒 is used to represent the cube of a
6

number. In the MGGP, individuals are evolved by crossover at a rate of
0.84, and a decision is made to perform a high-level crossover with a
randomly generated value. If the value is less than 0.2, the high-level
crossover is not applied, otherwise the standard crossover operator is
used.
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Fig. 8. Example of high-level crossover in MGGP/hive exchange mechanism in MHABCP.
3.3. Datasets

Three different datasets were used, each for a different coefficient,
with a 70% training samples to 30% test samples split. There were
a total of 33 samples in each dataset, with 23 randomly chosen for
training and the remaining 10 for testing. Each sample had two char-
acteristics: the angle of attack (𝐴𝑜𝐴) and the Reynolds number (𝑅𝑒).
7

It is worth noting that the non-normalized samples were found to be
more successful than the normalized samples in the datasets and thus
the experimental results were based on non-normalized samples. The
datasets were randomized in order to track the success of the methods
on the test samples.

The experiments that were conducted following the information in
this section are listed below:
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• Datasets were generated from programs (Airfoil Tools and JavaFoil
for each aerodynamic coefficient. These 3 datasets were randomly
split for experiments.

• Parameters of each algorithm were adjusted in such a way that
fair comparisons could be made according to the operators men-
tioned in Section 2.2.

• Datasets were tested with each of the four methods in 100 in-
dependent runs. Each run is performed in 250 iterations. The
algorithms were run according to the flow diagrams.

• After the experiments were completed, the results were analyzed
according to the 6 different performance criteria in Section 3.1.

. Simulation results

The experimental results of the methods are presented and discussed
n this section. First, the success of training and test data is obtained
ith six different metrics for each coefficient. Then, the statistical

ignificance of the differences between the methods and the results are
valuated using t-tests. Information on the 𝑅2 of these methods is also

provided. Finally, some additional analyses are performed to compare
the performance of the methods and to investigate the best models
resulting from the runs.

4.1. Results on the training/test sets

The performance evolution criteria of the training and test distribu-
tion values are given. The error bars in the boxes indicate the minimum
and maximum of the metrics and the circles show the median of the
metrics. Because the median is thought to be more robust to outliers,
the median is used along with the mean for the analysis (Gonçalves
et al., 2015).

Fig. 9 shows SSE distributions for all coefficients. After comparing
the four methods in the SSE training, MGGP has the lowest median
value, making it the most successful one. The method that comes closest
to MGGP’s success is MHABCP. GP and ABCP have worse results than
these versions. When evaluating the lowest and highest values, the
intervals of MGGP for 𝐶𝐷 and 𝑃𝐸 training, as well as MHABCP for
𝐶𝐿 training, are lower, indicating that their standard deviations are
low. ABCP is the worst method for 𝐶 and 𝐶 training. In addition,
𝐷 𝐿

8

the interval between the first and third quartile of the ABCP for 𝐶𝐿
training is quite narrow. Although MGGP and MHABCP have similar
error values in training and testing 𝑃𝐸, the range of MHABCP is wider
than MGGP. In 𝐶𝐷 test, the median values of GP and ABCP are similar
and MHABCP has a lower minimum value.

RMSE and MAE distributions in Figs. 10 and 11 show that similar
results can be noted for the SSE distributions. In 𝐶𝐷 test, the methods
have close median values in both the RMSE and MAE distributions. For
these three distributions in the 𝐶𝐿 tests, GP and ABCP have a narrow
interval and the standard deviation of GP is quite high. The standard
deviation of the versions is generally lower than for the GP and ABCP.

Fig. 12 shows the MSE distributions. With the exception of the 𝐶𝐷
test, MGGP is the most successful method. In addition, the standard
deviation for all test datasets is generally high. In particular, the range
of the first fourth quartile of MHABCP in the 𝑃𝐸 test is high. In the
𝐶𝐿 testing, the values for the second and third quartiles of the methods

P and ABCP are very close. In 𝐶𝐿 training, the range of ABCP is quite
arrow compared to the other methods.

Fig. 13 illustrates the MAPE distributions. ABCP has low perfor-
ance on all training datasets. Unlike the other methods, the standard
eviation of ABCP in the 𝐶𝐷 test is quite high. It can be noted that the
eviation of GP is high in the 𝐶𝐿 test.

Fig. 14 points out the SMAPE distributions. The training sets are
imilar compared to the MAPE distributions. The ranges are generally
ider in the 𝐶𝐷 test than in the MAPE distribution. When all plots are
valuated together, MGGP and MHABCP are more successful than the
tandard methods. MGGP shows the highest performance, while ABCP
hows the lowest performance.

MGGP has the lowest error values among all methods, and one-
ided two sample t-tests were used to see if these differences were
tatistically significant (significant level 𝛼: 0.05). The t-test results for
𝐷, 𝐶𝐿, and power efficiency (𝑃𝐸) are provided in Tables 2, 3, and 4.
dditionally, Table 5 shows the results of the t-test investigating the
ifference between GP and ABCP.

When the 𝑝-value in the t-test is small, it means that the error values
f the first method are higher than those of the second method, and this
est rejects the null hypothesis at the default significance level of 5%,
n favor of the alternative hypothesis (ℎ = 1). In this context, the other
ethods have higher error values than MGGP for the training sets of

ll coefficients in Tables 2 and 4, but for the 𝐶 testing, it cannot be
𝐷
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Fig. 10. Distribution of RMSEs of the best-of-run individuals.
Fig. 11. Distribution of MAEs of the best-of-run individuals.
Table 2
𝑃 -values between MGGP and other automatic programming methods for 𝐶𝐷 .

Metric GP-MGGP ABCP-MGGP MHABCP-MGGP

𝐶𝐷 Training 𝐶𝐷 Testing 𝐶𝐷 Training 𝐶𝐷 Testing 𝐶𝐷 Training 𝐶𝐷 Testing

SSE 0.00 0.77 0.00 0.84 0.00 0.71
RMSE 0.00 0.70 0.00 0.71 0.00 0.67
MAE 0.00 0.00 0.00 0.00 0.00 0.40
MSE 0.00 0.77 0.00 0.17 0.00 0.71
MAPE 0.00 0.23 0.00 0.02 0.00 0.68
SMAPE 0.00 0.29 0.00 0.05 0.00 0.69
9
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Fig. 12. Distribution of MSEs of the best-of-run individuals.
Fig. 13. Distribution of MAPEs of the best-of-run individuals.
Table 3
𝑃 -values between MGGP and other automatic programming methods for 𝐶𝐿.

Metric GP-MGGP ABCP-MGGP MHABCP-MGGP

𝐶𝐿 Training 𝐶𝐿 Testing 𝐶𝐿 Training 𝐶𝐿 Testing 𝐶𝐿 Training 𝐶𝐿 Testing

SSE 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.00 0.00 0.00 0.00 0.00 0.00
MAE 0.00 0.00 0.00 0.00 0.00 0.00
MSE 0.00 0.14 0.00 0.00 0.00 0.00
MAPE 0.00 0.24 0.00 0.03 0.06 0.52
SMAPE 0.00 0.00 0.00 0.00 0.04 0.07
10
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Fig. 14. Distribution of SMAPEs of the best-of-run individuals.
Table 4
𝑃 -values between MGGP and other automatic programming methods for 𝑃𝐸.

Metric GP-MGGP ABCP-MGGP MHABCP-MGGP

𝑃𝐸 Training 𝑃𝐸 Testing 𝑃𝐸 Training 𝑃𝐸 Testing 𝑃𝐸 Training 𝑃𝐸 Testing

SSE 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.00 0.00 0.00 0.00 0.00 0.00
MAE 0.00 0.00 0.00 0.00 0.00 0.00
MSE 0.00 0.00 0.00 0.00 0.00 0.01
MAPE 0.00 0.00 0.00 0.00 0.00 0.02
SMAPE 0.00 0.00 0.00 0.00 0.00 0.04
Table 5
𝑃 -values between ABCP and GP for all coefficients.

Metric ABCP-GP

𝐶𝐷 Training 𝐶𝐷 Testing 𝐶𝐿 Training 𝐶𝐿Testing 𝑃𝐸 Training 𝑃𝐸 Testing

SSE 0.00 0.57 0.00 0.05 0.00 0.00
RMSE 0.00 0.49 0.00 0.02 0.00 0.00
MAE 0.00 0.24 0.00 0.02 0.00 0.00
MSE 0.00 0.16 0.00 0.84 0.00 0.16
MAPE 0.00 0.04 0.00 0.52 0.00 0.77
SMAPE 0.00 0.07 0.00 0.02 0.00 0.90
Table 6
𝑅2 values for the 𝐶𝐷 coefficient.

Metric GP ABCP MGGP MHABCP

𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test

Mean 0.99 0.98 0.99 0.95 1.00 0.98 0.99 0.98
Best 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00
Worst 0.99 0.96 0.99 0.96 0.99 0.96 0.99 0.97

said that there is a significant difference, except for the MAE values
of GP and ABCP. For the 𝐶𝐿 training (Table 3), it can be noted that
the methods have higher values than MGGP, except for the MAPE and
SMAPE values of MHABCP. In general, this is also true for 𝐶𝐿 and 𝑃𝐸
testing, except for a few performance criteria.

Table 5 shows that ABCP has higher error values in training com-
pared to GP. However, with the exception of the 𝑃𝐸 testing, the error
values are generally close to those of GP. 𝑅2 values how much the
coefficients of the models obtained by the methods can explain the
independent parameters (𝐴𝑜𝐴 and 𝑅𝑒) in Tables 6, 7, and 8.
11
Table 7
𝑅2 values for the 𝐶𝐿 coefficient.

Metric GP ABCP MGGP MHABCP

𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test

Mean 0.93 0.87 0.92 0.86 0.98 0.96 0.98 0.95
Best 0.99 0.99 0.97 0.90 1.00 0.99 1.00 0.99
Worst 0.92 0.73 0.89 0.78 0.96 0.90 0.97 0.92

Table 8
𝑅2 values for the 𝑃𝐸 coefficient.

Metric GP ABCP MGGP MHABCP

𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test 𝑅2
Train 𝑅2

Test

Mean 0.90 0.49 0.88 0.45 0.99 0.87 0.98 0.86
Best 0.96 0.81 0.96 0.87 1.00 0.97 0.99 0.98
Worst 0.88 0.40 0.87 0.38 0.98 0.78 0.96 0.78

The 𝑅2 values for the 𝐶𝐷 coefficient in Table 6 show that almost

all models are in good fit with both training and test data as they
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Table 9
Mean/Std time of AP methods.

Problems GP ABCP MGGP MHABCP

𝐶𝐷 251.26/69.89 254.42/164.47 63.92/8.59 117.86/30.65
𝐶𝐿 266.04/55.43 380.27/234.47 72.42/12.42 224.52/27.49
Power efficiency 266.06/63.50 449.05/197.64 71.52/13.73 108.47/16.50

Table 10
Comparative results of the best models for the 𝐶𝐷 coefficient.

Criteria GP ABCP MGGP MHABCP

𝑆𝑆𝐸Train 0.001 0.001 0.001 0.001
𝑆𝑆𝐸Test 0.000 0.000 0.000 0.000

𝑅𝑀𝑆𝐸Train 0.006 0.007 0.005 0.006
𝑅𝑀𝑆𝐸Test 0.005 0.006 0.005 0.004
𝑀𝐴𝐸Train 0.004 0.005 0.004 0.006
𝑀𝐴𝐸Test 0.004 0.005 0.004 0.004
𝑀𝑆𝐸Train 0.000 0.000 0.000 0.000
𝑀𝑆𝐸Test 0.000 0.000 0.000 0.000

𝑀𝐴𝑃𝐸Train 1.489 2.018 1.490 2.423
𝑀𝐴𝑃𝐸Test 1.804 2.804 2.243 1.895

𝑆𝑀𝐴𝑃𝐸Train 0.015 0.020 0.015 0.024
𝑆𝑀𝐴𝑃𝐸Test 0.018 0.028 0.022 0.019

𝑅2
Train 0.995 0.994 0.997 0.995

𝑅2
Test 0.994 0.988 0.994 0.995

Best Model
Nodes 190 191 80 47
Depth 10 10 5 5
Complexity 1441 1512 303 162

are close to 1. As even the worst 𝑅2
Test values are 0.96 for ABCP and

MGGP methods. We can safely conclude that all methods predict the
𝐶𝐷 coefficient with great success. By examining the 𝑅2 values for 𝐶𝐿,
t is clear that both the mean and worst 𝑅2

Test values of GP and ABCP
ave decreased. However, from Table 7, the 𝑅2 values of the best of all
ethods for the training and test data are quite close to 1. In Table 8,

he mean success of GP and ABCP in the 𝑅2
Test values extracted for

erformance is less than 50%, indicating that the predictive abilities
f the models have decreased, but they are assigned an unjustifiably
igh 𝑅2

Train value. However, no overfitting is observed for MGGP and
HABCP. Both methods achieve high success in the training and

est data. When the 𝑅2 tables are evaluated along with the boxplots,
HABCP sets very successful models with higher fitness values, while
GGP has lower fitness values. This suggests that the fitness values,
hile necessary to compare the methods, are not sufficient and that

he results should be supported by the 𝑅2 values.

.2. CPU times of AP methods

Many studies in the literature have compared the AP methods by
valuating the time required by each algorithm. These methods may
how an increase in the time required depending on the complexity of
he improvement mechanisms within the algorithms (Karaboga et al.,
012; Gorkemli and Karaboga, 2019; Moghaddas et al., 2022). Koza
t al. stated that the complexity of the individuals generated in the
xecution of GP can significantly affect the execution time, leading to
ncertainty in the length of the study (Koza et al., 2006). In our study,
or a fair comparison in determining the operational complexity, we
ook the same number of evaluations and presented the different CPU
xecution times of the algorithms in Table 9. This table shows the mean
imes and standard deviation (in milliseconds) of 100 runs for each
roblem. These experiments were performed using Windows 10, Intel
ore i7-8565U CPU (1.8 GHz) with 8 GB of RAM.

It is clear from Table 9 that the quickest method among all the
ethods is MGGP. MGGP is notably faster than the other methods, with

minimum of 1.5 times faster and its variations are also quite minimal. 9

12
Table 11
Comparative results of best models for the 𝐶𝐿 coefficient.

Criteria GP ABCP MGGP MHABCP

𝑆𝑆𝐸Train 0.039 0.151 0.024 0.018
𝑆𝑆𝐸Test 0.025 0.173 0.018 0.141

𝑅𝑀𝑆𝐸Train 0.041 0.081 0.032 0.028
𝑅𝑀𝑆𝐸Test 0.050 0.132 0.043 0.119
𝑀𝐴𝐸Train 0.031 0.063 0.027 0.022
𝑀𝐴𝐸Test 0.035 0.103 0.030 0.092
𝑀𝑆𝐸Train 0.002 0.007 0.001 0.001
𝑀𝑆𝐸Test 0.002 0.017 0.002 0.014

𝑀𝐴𝑃𝐸Train 6.526 9.178 4.016 3.717
𝑀𝐴𝑃𝐸Test 7.050 24.787 10.519 15.226

𝑆𝑀𝐴𝑃𝐸Train 0.065 0.092 0.040 0.037
𝑆𝑀𝐴𝑃𝐸Test 0.067 0.194 0.086 0.152

𝑅2
Train 0.986 0.946 0.991 0.993

𝑅2
Test 0.986 0.903 0.990 0.921

Best Model
Nodes 188 192 65 66
Depth 10 10 5 5
Complexity 1543 1481 239 243

Table 12
Comparative results of best models for the 𝑃𝐸 coefficient.

Criteria GP ABCP MGGP MHABCP

𝑆𝑆𝐸Train 2.971 6.994 0.546 2.776
𝑆𝑆𝐸Test 6.058 4.149 0.588 1.768

𝑅𝑀𝑆𝐸Train 0.479 0.579 0.154 0.379
𝑅𝑀𝑆𝐸Test 0.650 0.627 0.242 0.378
𝑀𝐴𝐸Train 0.246 0.473 0.102 0.217
𝑀𝐴𝐸Test 0.701 0.556 0.218 0.430
𝑀𝑆𝐸Train 0.135 0.104 0.023 0.041
𝑀𝑆𝐸Test 0.154 0.102 0.024 0.019

𝑀𝐴𝑃𝐸Train 13.977 26.075 5.882 10.878
𝑀𝐴𝑃𝐸Test 15.747 15.832 7.145 7.536

𝑆𝑀𝐴𝑃𝐸Train 0.138 0.214 0.058 0.102
𝑆𝑀𝐴𝑃𝐸Test 0.172 0.135 0.072 0.076

𝑅2
Train 0.944 0.957 0.990 0.983

𝑅2
Test 0.808 0.872 0.970 0.976

Best Model
Nodes 81 134 83 67
Depth 10 10 5 5
Complexity 560 959 311 246

The next fastest method after MGGP is MHABCP, which demonstrates
that these versions are faster than the standard algorithms. In contrast,
ABCP is the slowest method. When evaluated by problem, the methods
are most efficient in solving the 𝐶𝐷 problem. After 𝐶𝐷, the problems
re solved in the order of power efficiency and 𝐶𝐿.

.3. Analysis of the best models

Tables 10, 11, and 12 show the comparative results for all methods
o determine the best models with the lowest error and highest 𝑅2

values after 100 runs for 𝐶𝐷, 𝐶𝐿, and 𝑃𝐸, respectively.
Analyzing the best models for the 𝐶𝐷 coefficient in Table 10, it

hould be noted that MGGP has the lowest error values, except for
criteria (𝑀𝐴𝑃𝐸Train , 𝑀𝐴𝑃𝐸Test , 𝑆𝑀𝐴𝑃𝐸Test ). For 𝑅2 values, all
odels have high and close fit values. However, MGGP for 𝑅2

Train and
BCP for 𝑅2

Test are higher than the others. The methods have similar
alues for almost all performance criteria. Unlike their standard ver-
ions, MGGP and MHABCP generate models with very low complexity.
he model generated by MGGP is about 4.75 times more complex than
hat generated by GP, while the model generated by MHABCP is about

.33 times less complex than that generated by ABCP.
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Fig. 15. The relationship between the predicted and actual data points of the best models.
For the coefficient 𝐶𝐿 (Table 11), the MGGP model produced lower
rror values for almost all performance evaluation criteria. However,
GGP has about 1.5 times higher error value for 𝑆𝑀𝐴𝑃𝐸Test than GP.

or 𝑅2
Train and 𝑅2

Test values, the other models, except ABCP, achieved
ery similar values. The highest 𝑅2

Test values belong to MGGP. When
e evaluate the number of nodes and the complexity of the trees
enerated by the models, we find that the model GP is very complex.
he MGGP and MHABCP models have complex values that are very
lose to each other. The MGGP model is about 6.5 times more complex
han the GP model ; the MHABCP model is about 6.1 times less complex
han ABCP.

Similar to the model analysis of the other coefficients for the 𝑃𝐸 co-
fficient (Table 12), MGGP produced a very low error value compared
o other methods for 𝑆𝑆𝐸Train. MHABCP, which produces the closest
rror value to MGGP, is about 5 times higher than MGGP. The same
s true for 𝑆𝑆𝐸Test. For 𝑅2

Test , GP and ABCP have lower performance
han the versions. The worst method for the coefficient 𝑃𝐸 is GP.

The simplified formulas of the best models of the MGGP are also
iven in Table 13. 𝐴𝑜𝐴 meant the angle of attack, whereas 𝑅𝑒 stand for
eynolds number in the table. The comparison between the predicted
alues of these models and the actual values is shown below, as
n Fig. 15 which shows that the prediction performance of the models
s well-fitted to the training data. At the same time, MGGP produces
odels with lower error values with a smaller number of training data,
hich proves that it can predict the coefficients accurately.

Fig. 15, in Fig. 16 scatter plots are drawn to show values for
ypically two parameters in each dataset. Scatter plots are used to show
alues for typically two variables for a dataset. In Fig. 16, the data
re plotted as blue points, where in each case the value of the actual
alues determines the position on the horizontal axis and the value of
he predicted values determines the position on the vertical axis. The
loser the blue points shown in the figure were to the lines, the stronger
he correlation between them. When evaluating all the points in Fig. 16,
t is clear that the predicted values are systematically increased by the
ctual values since the blue points cluster near the lines. There is also
strong positive correlation between the actual and predicted values

or both the training and test data for all coefficients.

. Discussion

In this study, we have proposed mathematical models using AP
ethods to predict aerodynamic coefficients. One of the main strengths
13
Table 13
Best formulas obtained by MGGP.

Simplified Formulas

𝐶𝐷 = 4.449𝑒 − 5(AoA − 5.876)
(

AoA2 + 2.0AoA − 9.241
)

+
1.613𝑒+14(AoA3−854.5)(851.1AoA−7865.0)
5.765𝑒+17AoA3+1.153𝑒+18Re−9.178𝑒+22

+
1.906𝑒+15(AoA+59.94)(AoA2+Re)

2.882𝑒+17AoA3+2.882𝑒+17Re+1.654𝑒+18
−

9.967𝑒+14(AoA+Re)(AoA3−846.8)(AoA−9.66)
2.951𝑒+20AoA3+5.903𝑒+20Re−4.699𝑒+25

− 0.2495

𝐶𝐿 =
3.294𝑒+15AoA(AoA−1.0Re)

Re
−2.251𝑒+15

2.679𝑒+12Re−1.419𝑒+17
−

1.0(3.02𝑒+14AoARe−2.644𝑒+17)
2.815𝑒+14AoA− 2.815𝑒+14Re

AoA
+9.3𝑒+15

−

1.141AoARee2

(AoA2−1.0Re)2
−

5.731𝑒+14AoA(AoA−1.0Re)(AoA+2.032)
9.007𝑒+15AoA+9.007𝑒+15Re+1.81𝑒+16

+ 0.1977

𝑃𝐸 = 1.027𝑒+15AoA+1.027𝑒+15Re
3.436𝑒+10AoA+3.436𝑒+10AoAA2−3.436𝑒+10Re

− 1.0(2.448𝑒+15AoA2+2.448𝑒+15AoA)
3.508𝑒+10Re−1.037𝑒+15

−
1.0(1.295𝑒+15AoA−1.295𝑒+15AoA2)

1.754𝑒+10Re−5.24𝑒+14
− 49650.0

Re
+

5.222𝑒+15AoA(2.0AoA+7.837)
2.749𝑒+11AoA−2.749𝑒+11Re

+ 1.027𝑒+15AoA(AoA+7.837)
1.718𝑒+10AoA+1.718𝑒+10Re

+ 29890

of these methods is that they can formulate the problem without
requiring a prior model, unlike classical algorithms. Despite the many
studies that have been conducted, as mentioned in Section 1, there is
still a research gap in using AP methods and verifying their success
in aerodynamic research. In addition to their good performance, the
methods have also proposed models for aerodynamic coefficients that
depend on dependent parameters.

From the boxplots and the tables of statistical test results, it can be
noted that MGGP method predicts the most accurate models. It has also
been shown that this method solves the problems faster than the other
three methods in Section 4.

In the following, we present the limitations of all methods and some
proposed solutions from some studies to overcome them:

• Scalability : AP methods can be very computationally intensive
and have difficulty solving large or complex problems. Parallel
computing can be used to solve large and complex problems.
However, since we had limited data, we did not use parallel
computing in our study.

• Early convergence: AP methods can converge to local solutions
before reaching the global optimum. However, convergence rates
can also be slow. Therefore, versions of the methods with other
optimization methods or other improvement operators are recom-
mended. For example, AP versions used in our study (MGGP and



S. Arslan and K. Koca Engineering Applications of Artificial Intelligence 123 (2023) 106210

6

p
t
F
u

p
t

a

D

c
i

Fig. 16. Best models prediction scatterplots.
MHABCP) produced faster and more successful models than the
standard versions (GP and ABCP) by overcoming this limitation.
In addition, studies have been conducted in the literature to
increase the convergence rate of AP methods (Nekoei et al., 2021;
Boudardara and Gorkemli, 2020).

• Dependence on initial solutions: The methods of AP can optimize
randomly generated initial solutions. Therefore, parameter tuning
can be used to increase the chances of finding the global opti-
mum. In our study, we try different parameters (population size,
functions, etc.) to generate initial solutions for all methods.

. Conclusions

The goal of this study is to investigate the best AP method for
redicting the aerodynamic coefficients and power efficiency of wind
urbine blade at low Reynolds numbers and different angles of attack.
or this purpose, two AP pioneer methods, including GP and ABCP, are
sed in conjunction with their MGGP and MHABCP versions.

The results clearly show that MGGP has the best performance in
redicting the aerodynamic coefficients and power efficiency compared
o GP, ABCP and MHABCP (MGGP 𝑅2 values in 𝐶𝐷 Train: 0.997-

Test: 0.994, in 𝐶𝐿 Train: 0.991-Test: 0.990, in 𝑃𝐸 Train: 0.990-Test:
0.970). Thus, this study clearly shows that the prediction of aerody-
namic coefficients and power efficiency can be correctly guaranteed by
MGGP without the need for numerous experimental tests, which are
time-consuming and costly.
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