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ABSTRACT
Recommender systems have become increasingly important in today’s digital age, but
they are not without their challenges. One of the most significant challenges is that
users are not always willing to share their preferences due to privacy concerns, yet they
still require decent recommendations. Privacy-preserving collaborative recommenders
remedy such concerns by letting users set their privacy preferences before submitting
to the recommendation provider. Another recently discussed challenge is the problem
of popularity bias, where the system tends to recommend popular items more often
than less popular ones, limiting the diversity of recommendations and preventing users
from discovering new and interesting items. In this article, we comprehensively analyze
the randomized perturbation-based data disguising procedure of privacy-preserving
collaborative recommender algorithms against the popularity bias problem. For this
purpose, we construct user personas of varying privacy protection levels and scrutinize
the performance of ten recommendation algorithms on these user personas regarding
the accuracy and beyond-accuracy perspectives. We also investigate how well-known
popularity-debiasing strategies combat the issue in privacy-preserving environments. In
experiments, we employ three well-known real-world datasets. The key findings of our
analysis reveal that privacy-sensitive users receive unbiased and fairer recommendations
that are qualified in diversity, novelty, and catalogue coverage perspectives in exchange
for tolerable sacrifice from accuracy. Also, prominent popularity-debiasing strategies
fall considerably short as provided privacy level improves.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Security and
Privacy
Keywords Recommender systems, Popularity bias, Privacy-preserving, Collaborative filtering,
Unfairness

INTRODUCTION
Following the advent of online facilities through the Internet, many helpful digital
platforms have been developed to support people in several aspects, such as daily activities
(i.e., shopping, listening to music, watching movies) or interacting with people via social
media. However, the amount of available information on these platforms has reached
overwhelming levels in recent years, also known as the information overload problem,
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making it difficult for users to deal with (Jannach & Zanker, 2022). Recommender systems
(RSs) are introduced as artificial intelligence-based solutions to overcome this problem by
suggesting appropriate items/services to users’ expectations/desires (Ko et al., 2022). Since
they providemany benefits for two fundamental stakeholders of the platforms, i.e.,users and
goods or service providers, many prominent digital applications for different domains, such
as Netflix (https://netflix.com/), Twitter (https://twitter.com/), Spotify (https://spotify.com/),
YouTube (https://youtube.com/), and Booking.com (https://booking.com/), have integrated
such tools into their systems and continually attempted to improve them to provide better
referrals to individuals.

The most effective approaches to providing individual recommendations are
collaborative filtering (CF) techniques (Su & Khoshgoftaar, 2009), although some other
scenario-specific practical approaches, like content- (Shambour et al., 2022) or knowledge-
based filtering methods (Agarwal, Mishra & Kolekar, 2022) exist. By operating on a user-
item preference matrix, the collaborative recommenders usually consider similarities
between users or items and perform recommendation tasks by (i) computing a prediction
score for items that are not experienced by users or (ii) generating ranked lists (i.e., top-N
lists) including recommended items for users (Bobadilla et al., 2013). Over the last two
decades, many different algorithms following this approach have been proposed, and
also, there exists a rich literature with their main limitations (Koren, Rendle & Bell, 2022).
Even if pioneering research has commonly aimed at handling their scalability, accuracy, or
cold-start issues, their inclinations to feature a few popular items in their recommendations
by disregarding many other ones, also referred to as the popularity-bias problem, have
become one of the most critical concerns of RSs in recent years (Abdollahpouri et al., 2020;
Elahi et al., 2021).

Such undesired bias propagation of the CF recommenders might be very problematic
for users and service providers in real-world applications. On the one hand, users cannot
receive qualified recommendations regarding beyond-accuracy aspects such as diversity,
serendipity, and novelty, resulting in substantial decreases in their satisfaction with
the platform (Yalcin & Bilge, 2022). On the other hand, items in the catalogue are not
evenly represented in the recommendations, which leads to unfair competition in the
market. Worse, if such weakness exists in the system, the platform might be subjected
to manipulative attacks of malicious stakeholders aiming at featuring their products
in recommendation lists or demoting rivals’ items to obtain financial benefits (Si &
Li, 2020). Also, for specific application domains, such as social media, such weakness
could be viciously abused to manipulate users by dragging them into ideological
echo chambers (Cinelli et al., 2021). Because of these reasons, several recent studies in
RSs have comprehensively evaluated the adverse effects of the popularity bias of the
recommenders and developed various treatment strategies, also referred to as popularity-
debiasing methods, to provide more balanced recommendation lists in terms of item
popularity (Abdollahpouri, Burke & Mobasher, 2019; Yalcin & Bilge, 2021; Boratto, Fenu &
Marras, 2021). Even if several popularity-debiasing methods exist, post-processing ones
attempting to re-rank recommendation lists by penalizing popular items are the most
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utilized ones since they are independent of the internal mechanism of the considered
recommendation approach and easily applied to the output of any recommenders.

The common agreement regarding why such a bias against popular items occurs in
recommendations is the imbalances in the rating distribution observed in the original
preference data on which the recommendation algorithm is trained (Abdollahpouri, Burke
& Mobasher, 2018). More concretely, a few popular items typically receive most of the
provided ratings in the dataset. In contrast, the remaining majority of items are evaluated
by a small number of users, which ends up with user preferences dispersed with a long-tail
shape across items, as presented in Fig. 1 for three benchmark data collections crawled for
different application domains.

Another primary limitation of CF recommenders is that it might be challenging to
collect confidential preference data of users because of some general reasons, such as
the lack of functionality of user interfaces and the laziness of individuals. This issue also
might be more problematic, especially for specific application domains like social media,
since users avoid sharing their opinions on sensitive content due to data leakage concerns
(Lu et al., 2022). Being unable to obtain genuine profiles of users mostly ends up with
unqualified recommendations, especially regarding predictive accuracy, as traditional CF
recommenders are trained on data consisting of unreliable ratings (Yargic & Bilge, 2019).
Therefore, there has been considerable interest in privacy-preserving collaborative filtering
(PPCF) to provide accurate predictions at a satisfactory level without violating such privacy
concerns of individuals (Ozturk & Polat, 2015; Pramod, 2023). Although several PPCF
schemes exist, the most prominent approach in central server-based recommenders is to
apply randomized perturbation and obfuscation techniques during preference elicitation
stages to mask (i) the list of actually rated items and (ii) the actual ratings given for
these items (Polat & Du, 2003; Yargic & Bilge, 2019). Since the perturbation process is
performed by adding random noise from a probability distribution with appropriate
parameters, the aggregate still enables the central server to provide dependable yet private
recommendations to users. Therefore, PPCF algorithms operate on a disguised version
of the original preference collection where the perturbation level balances the confliction
goals of accuracy and privacy.

The random noise inserted into a user profile conceals the list of actually rated items
by injecting fake votes into some unrated cells, which might lead to significant changes
in the distribution of ratings across items. Therefore, this process might cause the level of
observed popularity bias in the recommendations to be significantly altered, as the main
reason for this issue is the imbalances in the dispersion of user preferences. Moreover,
injecting fake ratings into user profiles alters each item’s total number of ratings received.
Therefore, it would be expected that the performances of the popularity bias treatment
methods, especially the post-processing ones, would significantly vary since they are mostly
based on penalizing items based on their popularity rate (i.e., the total number of ratings
received) while re-ranking recommendation lists (Abdollahpouri, Burke & Mobasher, 2019;
Yalcin & Bilge, 2021). Although privacy-preserving recommendation systems are of crucial
importance with the increasing focus on data protection regulations today, their popularity
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Figure 1. The long-tail distribution of the provided user preferences in the (a) MovieLens-1M (movie),
(b) Douban Book (book), and (c) Yelp (local business) data collections.
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Figure 1 The long-tail distribution of the provided user preferences in the (A) MovieLens-1M (movie),
(B) Douban Book (book), and (C) Yelp (local business) data collections.
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bias propagation behaviour remains elusive, and how well-known popularity-debiasing
methods would perform on these systems is not investigated.

In this study, we attempt to present a comprehensive analysis evaluating how randomized
perturbation-based privacy-preserving strategies affect popularity bias propagation in
recommendations. In addition, we consider three prominent popularity-debiasingmethods
and scrutinize their performance with varying levels of privacy provided for users. For this
purpose, we specify four user personas according to their desired privacy-protection level.
The first persona, Utterly Unconcerned (UU), represents users who do not care about their
privacy and require the highest possible level of accuracy in received recommendations.
Note thatUU also refers to users of traditional non-private CF recommenders. The second
persona, i.e., Barely Bothered (BB) corresponds to users who are not so worried if their
privacy is violated, and they pick low-level privacy parameters in a request of good accuracy.
The third persona, Pretty Pragmatists (PP), represents users who do not compromise their
privacy but are still interested in receiving decent recommendations. Therefore, they pick
privacy parameters to balance accuracy and confidentiality. Finally, the fourth persona,
Fiery Fundamentalists (FF), resembles highly concerned people with their privacy, so they
are only willing to share extremely perturbed preferences sacrificing accuracy completely.
In a nutshell, the main contributions of our study are given in the following.
• We present a comprehensive experimental analysis of how much the popularity bias is
propagated in recommendations for four scenarios, i.e., UU, BB, PP, and FF, on three
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benchmark datasets using ten state-of-the-art recommendation algorithms of different
families.
• We analyze how the adverse effects of the popularity bias problem on the accuracy and
beyond-accuracy recommendation quality differentiate for such privacy level-based user
personas.
• We consider three well-known popularity debiasing methods and observe whether
they still perform similarly when BB, PP, or FF scenarios are considered rather than no
privacy protection (i.e., the case of UU ) provided.

The remaining sections of the study are organized as follows, respectively: (i) the "Related
work" section presents a review of both privacy-preserving methods for CF algorithms
and popularity bias-concerned studies, (ii) the "Constructing user personas based on
varying privacy protection requirements" section explains how we construct user personas
according to varying privacy protection requirements, (iii) the "Experimental setup"
section explains the experimental setups, including utilized datasets, recommendation
algorithms, and evaluation protocols, followed by experimentation methodology and
considered popularity-debiasing methods, (iv) the ‘‘Analyzing robustness of privacy-
preserving collaborative recommenders against popularity bias issue’’ section analyzes how
privacy-preserving strategies resist the popularity-bias problem, and the ‘‘Analyzing how
popularity-debiasing approaches differently perform for privacy level-based user personas’’
section investigates how popularity-debiasing methods act for privacy-based user personas,
and (v) the ‘‘Conclusion and future work’’ section concludes the study and introduces
our future directions. Note that the source code accompanying this study is made publicly
available (https://doi.org/10.5281/zenodo.7789914) for reproducibility purposes.

RELATED WORK
Since our research is mainly based on two fundamental problems related to
recommendation approaches, i.e., privacy protection and popularity bias issues, we
organize this section into two sub-sections. The first provides a literature review on
privacy-preserving strategies introduced for CF recommenders, while the second presents
recent studies on the popularity bias problem and the treatment methods to cope with this
issue.

Privacy-preserving approaches for CF recommenders
Recent years have seen a significant increase in research into the privacy concerns raised by
conventional CF systems. Many studies have concentrated on developing PPCF approaches
to address these issues (Wei, Tian & Shen, 2018). These approaches are commonly designed
using k-anonymity, obfuscation, differential privacy, cryptography, and perturbation-based
techniques.

For distributed recommendation systems, cryptographic techniques are frequently
utilized to protect the privacy of individuals (Badsha, Yi & Khalil, 2016; Li et al., 2017). For
example, an unsynchronized secure multi-party computation protocol was introduced by
Li et al. (2016). This protocol incrementally computes similarities between items without
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requiring individuals to be present when the calculation stages are performed. As another
example, Shmueli & Tassa (2017) have offered a distributed recommendation strategy in
which vendors communicate encrypted data with a mediator over secure protocols to
calculate predictions or ranking items in generating recommendation lists. Also, some
recent studies have used homomorphic encryption to encrypt the quality of service values
to recommend personalized, high-quality web services based on user and location data
without revealing confidential information (Badsha et al., 2018). Furthermore, Li et al.
(2017) have proposed a successful approach for the group recommender systems that aim
to safeguard users’ privacy while making recommendations. The process of computing
similarities between items is considered a probabilistic inference issue in Zou & Fekri
(2015), and a semi-distributed belief propagation network-based approach is introduced
for item-based PPCF systems. This way, disclosure of user preferences is prevented by
including a subset of individuals in the network at a specific time.

Another crucial method for protecting user privacy is anonymization, which aims
to break the link between particular users and their rating profiles. For example, a
micro aggregation-based PPCF solution is suggested by Casino et al. (2015) to ensure
user privacy protection by using k-anonymity masks. Chen & Huang (2012) explore
achieving k-anonymity for large-scale and sparse database kinds (e.g., RSs) and introduce a
k-anonymity heuristic approach based on clustering for protecting privacy in data sharing.
In addition, Wei, Tian & Shen (2018) propose a (p, l , a)-diversification technique for
improving the performance of existing k-anonymity methods, where p denotes previous
information on the rating profile of the users and (l , a) denotes user diversity to increase
the degree of provided privacy. As the last example of the anonymization-wised method,
Zhang, Lee & Choo (2018) apply this strategy for a scenario of privacy-aware smart cities
and model privacy issues in cities as a PPCF issue.

Differential privacy is another prominent successful mechanism employed in CF-based
approaches to quantify the loss of privacy thatmay occur when a user’s personal preferences
are considered when generating a suggestion. Dwork et al. (2006) is the pioneering study
propounding the differential privacy concept, and it is later used by McSherry & Mironov
(2009) for theRSs domain by randomizing actual user preferences using a private covariance
matrix. A more recent study (Guerraoui et al., 2015) offers a distance-based differential
privacy solution to alter real profiles by exchanging components at specific distances
within the profile. Shen & Jin (2014) propose an alternative method that combines noise
calibration, ensures theoretical privacy and utility, and allows for adjustable instance-based
noise injection into the preference profiles of the users. Finally, Hou et al. (2018) suggest
a two-stage methodology for neighbourhood-based differential privacy recommendations
and private neighbour selection in the context of medical recommendations.

In CF systems, data modification techniques like data obfuscation and randomized
perturbation are the most used to protect privacy in the literature. More specifically, the
data obfuscation technique tries to conceal private information while maintaining access
to the information required for making recommendations. For example, Parameswaran
& Blough (2007) present a permutation-based data obfuscation technique for central
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server-based CF applications. Also, a user-based PPCF recommender utilizing semi-
honest parties to execute additional calculations is proposed by Badsha et al. (2017). For
distributed recommendation contexts, Boutet et al. (2016) suggest employing coarse-
grained obfuscated versions of user profiles to reveal private information. Also, Elmisery
& Botvich (2017) extend traditional sole obfuscation level-based methods to identify more
reliable target users by considering arbitrary obfuscation degrees.

Randomized perturbation techniques (RPTs), an alternative to previous approaches,
can safeguard user privacy by falsifying actual user preferences before they are sent to
the recommendation server (Polat & Du, 2003; Polat & Du, 2005a; Polat & Du, 2005b).
For example, Bilge & Polat (2013) develop a scalable PPCF technique based on bisecting
k-means clustering and randomized perturbations. In another study (Gong, 2011), the
privacy of user-profiles spread across various repositories in recommendation processes is
protected by combining RPTs with securemulti-party computation techniques. By utilizing
various levels and ranges of random values, Polatidis et al. (2017) suggest enhancing the
RPT-based PPCF process. In addition, Liu et al. (2017) develop a hybrid approach to
privacy preservation that combines RPTs with differential privacy to offer more robust
user preference protection than current RPT-based approaches. Finally, Yargic & Bilge
(2019) apply RPTs to protect individuals’ privacy in the multi-criteria recommender
systems domain.

Apart from the RSs domain, some prominent privacy-protection mechanisms also
exist, especially for machine learning, particularly federated machine learning (Yin, Zhu &
Hu, 2021). For example, Xu et al. (2019) have introduced HybridAlpha to protect against
privacy risks in federated learning using secure multiparty computation (SMC) protocol
based on functional encryption. Another recent study offers a hybrid technique combining
SMC and differential privacy to cope with the trade-off between accuracy and small data in
parties, including small amounts of data (Truex et al., 2019). Also, Kerkouche et al. (2021)
have introduced a privacy protection mechanism for federated learning in the context of
medical research and patient care, relying on differential privacy to improve bandwidth
efficiency by enabling confidentiality. Finally, Lu et al. (2022) introduce a federated learning
approach to detect malfunctions that may occur in wind turbines in an organization in the
energy sector. To ensure inter-institutional data privacy, they have enriched their proposed
approach with a biometric authentication technique to reduce privacy-preserving risks.

As it is known, RSs typically need rating data of individuals to produce appropriate
referrals to them. Therefore, the size/dimension of data collections for prediction purposes
directly affects the recommendation quality; the need for big data also brings two different
problems. One is the transfer, analysis, and processing costs of such massive data. Second,
it is not easy to ensure the confidentiality of big data and protect user privacy. Some
recent studies, therefore, have also been carried out on using distributed environments
to protect data privacy (Omar et al., 2019; Bosri et al., 2020; Lin, Tian & Liu, 2021). For
example, Bosri et al. (2020) introduce a privacy-preserving recommendation system,
Private-Rec, by integrating artificial intelligence strategies with blockchain technology.
This system provides a secure environment for users by utilizing distributed features
where users’ data is employed with their permissions. Another recent study introduces
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a blockchain-based recommender system platform that prioritizes privacy preservation
(Omar et al., 2019). The decentralized nature of blockchain allows clients to control their
data and consent to its use in the analysis. This platform incentivizes clients to share their
information by offering rewards such as points or discounts, which can be used for relevant
recommendations provided by the online company. Finally, Lin, Tian & Liu (2021) develop
a blockchain-based recommendation system using local sensitive hashing and differential
privacy techniques in the blockchain environment. Thus, the cost of prediction calculations
decreased while the quality of the recommendation and the level of user privacy increased.

Popularity bias issue of CF recommenders
One of the most critical topics in RSs is how fairly the system acts for two essential
stakeholders, i.e., users and item/service providers, without propagating any bias in
provided referrals (Abdollahpouri & Burke, 2019; Yalcin, 2022a). However, recent studies
reveal that recommendation algorithmsmostly fail to handle items in their produced ranked
lists fairly due to several reasons, such as their internal mechanisms or characteristics of
data where they are trained (Chen et al., 2020).

One well-known example of such an issue is the popularity-bias problem, which leads
to recommendation lists dominated mostly by popular items, even if they would not
be extremely desired (Abdollahpouri et al., 2020; Yalcin & Bilge, 2022). This problem,
unfortunately, causes significant decreases in the beyond-accuracy quality of the
recommendations, such as diversity, catalogue coverage, or novelty, and worse weakens
the robustness of the system against some malicious attacks. Therefore, there has been
a rising interest in scrutinizing its adverse effects on recommendations and developing
practical popularity-debiasing methods to achieve more appropriate recommendations
(Abdollahpouri, Burke & Mobasher, 2019; Yalcin & Bilge, 2021; Boratto, Fenu & Marras,
2021).

The initial research on this problem has mainly discovered its effects on
recommendations for different application domains such as movies, music, travelling,
and online courses. For example, Jannach et al. (2015) consider several CF recommenders
with different categories, such as matrix factorization- and neighbourhood-based and
observe that they intrinsically feature a small number of popular items repeatedly in their
recommendations. They also analyze how finetuning parameters of such CF algorithms
affect their bias toward popular items. Boratto, Fenu & Marras (2019) perform a similar
analysis for massive open online courses by considering the same set of CF recommenders
to analyze how they are biased towards the popularity of courses and their categories.
Another pioneering study (Abdollahpouri et al., 2020) analyses how the effects of such an
issue differ for users and item suppliers.

The literature also considers how the recommenders’ popularity bias unfairly affects
individuals with different interest levels in item popularity. For example, in movie
recommendations, Abdollahpouri et al. (2019) observe that this problem is more harmful
to users interested in popular items in their original profiles when compared to selective
ones who mostly rate niche ones. Such an analysis is later re-performed for music
recommendations with a more extensive set of CF recommenders (Kowald, Schedl & Lex,
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2020). Also, Yalcin & Bilge (2022) classify individuals based on the essential characteristics
of their rating behaviour and observe that highly-interacting, selective, and hard-to-predict
users receive extremely unfair recommendations, especially in terms of their original
propensities on item popularity. Finally, Yalcin & Bilge (2023) have analyzed the effects of
popularity bias on users with different personality traits in the big-five-factor model and
explored that users avoiding new experiences and individuals who are less extroverted are
subjected to more unfair recommendations regarding item popularity.

Researchers have been exploring ways to mitigate the issue of popularity bias in
recommender systems. For this purpose, various methods have been developed that
can be broadly classified into three categories: pre-processing, in-processing, and post-
processing, depending on how they reduce bias in recommendations (Boratto, Fenu &
Marras, 2021). Pre-processing methods typically aim to balance the distribution of user
preferences by altering data used to train recommendation algorithms. One example is
an approach that divides items into head and tail categories based on their popularity
and uses different data sets for recommendations for each group (Park & Tuzhilin, 2008).
Another pre-processing method introduced by Jannach et al. (2015) constructs user-item
pairs where popular items are filtered out to achieve tuples where observed items are less-
popular. After that, recommendation algorithms are trained on such constructed tuples.
Additionally, a probability distribution function designed considering item popularity can
give underappreciated items more prominence in recommended lists (Chen et al., 2018).

Several attempts have also been made to tackle the popularity bias problem in
recommender systems, particularly through in-processing methods. These methods
modify conventional recommendation algorithms to consider both relevance and
popularity simultaneously; therefore, they are commonly considered algorithm-specific
ungeneralizable solutions. Some prominent examples of these approaches include: (i)
a method that estimates individual preferences for disfavored items and utilizes this
information to penalize popular items during the recommendation process (Kamishima
et al., 2014); (ii) an optimized variant of the RankALS algorithm that balances intra-list
diversity and accuracy (Abdollahpouri, Burke & Mobasher, 2017); (iii) a personalized
recommendation framework that estimates familiarity between items based on their
popularity and prunes the most preferred ones in order to achieve a more balanced
common-neighbor similarity index (Hou, Pan & Liu, 2018); (iv) a debiasing approach
that minimizes the correlation between user-item relevance and item popularity, which
helps to treat items in the long-tail equally (Boratto, Fenu & Marras, 2021); (v) and a
recommendation method based on variational autoencoders that penalizes scores given
to items based on their historical popularity to increase diversity in the recommendation
results (Borges & Stefanidis, 2021).

On the other hand, post-processing methods for this issue can be applied to the
output of any recommendation algorithm and involve re-ranking or creating a new
list of recommendations that follows a specific constraint. One approach, proposed by
Abdollahpouri, Burke & Mobasher (2018), involves calculating final scores by weighting
the predicted ratings inversely proportional to the popularity of items and then using
these scores to re-rank the recommended list. Similarly, Yalcin & Bilge (2021) propose two
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methods for popularity-debiasing in recommendations, multiplicative and augmentative,
specifically tailored for groups of users rather than individuals. Both are based on a
re-ranking strategy of items but differ in how they penalize items based on their popularity.
More specifically, the multiplicative approach attempts to reduce the average popularity
of the recommended items by using the item weights as a factor when computing the
ranking scores. On the other hand, the augmentative approach takes prediction scores as
the primary influence and adds the item weights as a factor to the ranking scores to achieve
a reasonable level of accuracy in the final recommendations. Another renowned approach,
presented by Abdollahpouri, Burke & Mobasher (2019), is the xQuad re-ranking approach,
which balances the trade-off between ranking accuracy and the coverage of long-tail items.

As can be followed by the presented two sections, there is a rising interest in the
RSs literature to protect individuals’ privacy and counteract the popularity bias of
recommendation algorithms. However, to the best of our knowledge, there is no research
analyzing how the bias propagation of CF recommenders differentiates when they are
empoweredwith such privacy-protectionmechanisms. In addition, it is required to perform
more analyses of whether popularity-debiasingmethods can still show similar performances
when traditional CF recommenders are decorated with such privacy-preserving strategies.

CONSTRUCTING USER PERSONAS BASED ON VARYING
PRIVACY PROTECTION REQUIREMENTS
Collecting accurate data from individuals is crucial for CF methods to provide qualified
referrals. However, due to confidentiality issues, individuals usually avoid sharing their
actual tastes for items/products, making it difficult to model them correctly, thus leading to
poor referrals. Therefore, producing accurate recommendations by enabling users’ privacy
has become one of the most important topics in RSs in recent years (Ozturk & Polat, 2015;
Pramod, 2023).

PPCF approaches introduced towards such aim mainly attempt to conceal (i) the list
of items truly rated by users and (ii) the genuine values of the ratings provided for them.
The first can guard users against malicious attacks, such as unsolicited marketing, while
the second can protect them from potential price or profiling discrimination attempts. As
one of the most common and effective approaches to preserving users’ privacy, RPTs aim
to randomly inject fake votes into some empty cells of the users’ profiles and randomly
perturb each genuine rating in their profiles (Polat & Du, 2003; Yargic & Bilge, 2019). Thus,
by obstructing the exposure of actual data of individuals without endangering the utility of
preference data, these approaches are highly beneficial in providing privacy at a satisfactory
level yet not sacrificing much from accuracy.

More concretely, these techniques suggest concealing a vote entry v by changing it with
v+r , where r is a random value drawn from either a Gaussian or uniform distribution. The
range of generated random values is adjusted by selected σu parameter, where σu= [0,σmax)
and σmax is determined by the central server to regulate the distortion level of actual user
preferences. Suppose that α is a constant and equals

√
3σu; the random values are drawn

from either U(−α,+α) orN (0,σu) distributions. Moreover, RPTs inject random values as
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fake votes to user profiles’ arbitrarily selected empty cells. Here, the total number of empty
cells to be injected is adjusted based on the selected βu parameter, where βu= [0,βmax) and
βmax is determined by the central server relating to the density ratio of the entire user-item
rating matrix.

Algorithm 1 Randomized perturbation procedure for data concealing
Input: User rating vector (u1×n), σmax , and βmax

Calculating z-scores (→Z ):
1: for all items in u (j← 1 to n) do
2: zj = [uj−mean(u)]/std(u)
3: end for

Adjusting privacy parameters:
4: σu← rand(0,σmax), βu← rand(0,βmax), and α←

√
3σu

5: e← # of empty cells, g← # of genuine ratings
6: F← e×βu%

Selecting dispersion:
7: dist← rand(Gaussian, uniform)

Creating random values:
8: if dist is Gaussian:
9: R←N (g+F;µ= 0,σu)
10: else:
11: R← U(g+F;α)
12: end if

Disguising z-scores (→Z
′

):
13: for all items in u (j← 1 to n) do
14: z

′

j = (zj+Rj)
15: end for

return Z
′

In these settings, each user tunes their own σu and βu values based on desired privacy
level and then masks their profiles, as described in Algorithm 1. Afterwards, they share
their disguised profiles instead of the original ones with the service provider. Thus, a
disguised preference matrix, i.e., R

′

m×n, where m and n are the total numbers of users and
items, respectively, is achieved on which the recommendation generation process will be
performed via any proper CF recommender.

To comprehensively analyze how users with varying degrees of privacy are differently
affected by the popularity bias issue in recommendations, we define four types of users
according to their desired confidentiality protection level by applying Algorithm 1. The
first, Utterly Unconcerned (UU), indicates individuals of the standard non-private CF
approaches. These users are as completely reckless about their privacy and expect to receive
recommendations with the highest possible accuracy. The second, Barely Bothered (BB),
refers to users who prefer low-level privacy protection and do not get anxious if their
privacy is slightly violated. The third, Pretty Pragmatists (PP), indicate individuals who
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Table 1 Parameters of the constructed privacy-based user personas.

User Persona σmax βmax Dispersion Privacy-level

Utterly Unconcerned (UU) 0 0 N/A No privacy
Barely Bothered (BB) 2 5 Uniform/Gaussian Low-level
Pretty Pragmatists (PP) 3 10 Uniform/Gaussian Mid-level
Fiery Fundamentalists (FF) 4 25 Uniform/Gaussian High-level

pragmatically balance privacy and accuracy; therefore, they desire to receive decent
recommendations as long as their privacy is not violated. Finally, the fourth, Fiery
Fundamentalists (FF), refers to users who are hypersensitive about their privacy and
never act as troublemakers regarding accuracy performance.

When guaranteeing the privacy of users by applying the RPTs, the selected values of
σmax and βmax are crucial for them in adjusting their desired privacy level. Remember
that higher (resp. lower) σmax and βmax values refer to more (resp. less) advanced privacy
protection. Therefore, we construct these four user personas by considering the parameter
tunings given in Table 1 when adopting the RPTs and examine each separately to observe
the adverse effects for each privacy level-based user personas more clearly.

Although provided privacy levels are intuitively observed in Table 1, we also present
a methodology to quantify the concrete level of privacy obtained by βmax and σmax

parameters. For this purpose, we perform separate sets of analyses for privacy quantification
provided by these two parameters.

According to Algorithm 1, each disguised user profile contains genuine and fake
ratings, filling βmax% of the empty cells. Therefore, privacy leakage by the server can
only be realized by first estimating the exact set of genuine items with some uncertainty.
Intuitively, suchuncertainty can be quantified by estimating the probability of any randomly
selected rating being genuine. Let a={a1,a2,...,pa} denote the set of genuine ratings and
f= {f1,f2,...,fe×βmax } define the set of inserted fake ratings. Then, the probability of an
arbitrarily selected rating, r , to be genuine is Pr(r ∈ a) can be estimated as |a|

|a|+|f| . Note that
such probability of being lower means a better level of provided privacy protection, and
vice versa.

We present histograms of estimated probabilities for three personas in three datasets
(i.e.,MovieLens-1M (ML), Douban Book (DB), and Yelp) in Fig. 2. Note that the details of
these datasets are also given in the following section. As expected, FF users mainly locate
in the lowest probability bin in histograms, while PP and BB users tend to distribute into
higher probability bins, indicating that personas obtain a declining level of confidentiality
from FF to BB. Note that as the ratio of the number of ratings per user to the number of
items in the dataset decreases in datasets, the effect of βmax on privacy level scales up, as
can be observed in larger datasets such as Yelp and DB.

In the context of rating distribution, it is crucial to measure the privacy obtained by
adding random noise to distinguish authentic votes from fake ones. Although central
servers can differentiate between them, extracting genuine values from their perturbed
z-score forms is necessary. To quantify the privacy of an additive noise-based perturbed
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User Persona σmax βmax Dispersion Privacy-level
Utterly Unconcerned (UU) 0 0 N/A No privacy
Barely Bothered (BB) 2 5 Uniform/Gaussian Low-level
Pretty Pragmatists (PP) 3 10 Uniform/Gaussian Mid-level
Fiery Fundamentalists (FF) 4 25 Uniform/Gaussian High-level

Table 1. Parameters of the constructed privacy-based user personas
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Figure 2. Histograms of estimated probabilities for three personas in the (a) ML, (b) DB, and (c) Yelp
datasets.

In the context of rating distribution, it is crucial to measure the privacy obtained by adding random376
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Figure 2 Histograms of estimated probabilities for three personas in the (A) MovieLens-1M (ML), (B)
Douban Book (DB), and (C) Yelp datasets.

Full-size DOI: 10.7717/peerjcs.1438/fig-2

Table 2 Privacy levels (5(P|U )) for different personas.

Dataset User Personas

BB PP FF

ML 2.644 2.883 3.021
DB 1.864 1.985 2.051
Yelp 1.464 1.540 1.579

variable, Agrawal & Aggarwal (2001) propose a metric based on differential entropy. This
metric is applied in PPCF context by Polat & Du (2005b); Bilge & Polat (2013). In this
context, the original user vector is represented by P , and the perturbing random data is
represented by R, yielding U = P+R. The average conditional privacy of P is defined as
5(P|U )= 2H (P|U ), where 2H (P|U ) is the conditional differential entropy of P given U .
Since P and R are independent random variables, the privacy level of P after disclosing U
can be calculated as5(P|U )=5(P)×(1−Pr(P|U )), where Pr(P|U )= 1−2H (U |P)−H (U ).
Assuming a normal distribution for P , the privacy levels,5(P|U ), for various perturbation
levels are shown in Table 2. The output shows that the privacy levels increase with increasing
perturbation of profiles, as expected.
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EXPERIMENTAL SETUP
In this section, we introduce the experimental settings, including utilized datasets,
recommendation algorithms, and evaluation protocols, followed by experimentation
methodology, and considered treatment methods for the popularity bias issue.

Datasets
In the experiments, we use three publicly available real-world benchmark datasets collected
for different application domains, as in a very related recent study (Yalcin & Bilge, 2022);
MovieLens-1M (https://grouplens.org/datasets/movielens/1m/) (ML) for the movies (Harper
& Konstan, 2015), Douban Book (https://www.douban.com/) (DB) for the books (Shi et
al., 2018), and Yelp (https://www.yelp.com/) for the local business reviews (Shi et al., 2018).
User preferences in all utilized datasets are discrete and employ a five-star rating scale.
Table 3 presents detailed information about the ML, DB, and Yelp datasets. Also, they
have varying dimensions and sparsity ratios, as can be followed in Table 3, enabling us to
analyze how such two important aspects of the datasets are related to potential unfairness
issues for user personas with different privacy levels.

Utilized recommendation algorithms
It is very important to enrich the experiments with different parameters to analyze better
the potential unfairness issues for individuals preferring varying privacy levels. The most
convenient way to achieve it is to employ different algorithms in the recommendation
generation phase. Indeed, this process can be described as generating recommendation lists
using different algorithms after performing data perturbation and obfuscation operations
to see how the privacy protection measures affect each algorithm’s bias towards popularity.

Therefore, ten different algorithms, two non-personalized and eight state-of-the-art
approaches of four different CF families (i.e., matrix factorization-based, probabilistic,
clustering-based, and neural networks-based), have been determined for recommendation
purposes, as detailed in Table 4. Two non-personalized methods, i.e., ItemAverage (IA)
and MostPopular (MP), are selected due to their wide usage in the literature to provide
straightforward recommendations (Boratto, Fenu & Marras, 2019; Yalcin & Bilge, 2022).
More specifically, the IA recommends items with the highest average rating, while the
MP sorts items in descending order based on the number of their received ratings and
then considers the most popular ones as recommendable. Therefore, by its nature, MP
produces the same recommendation lists for each individual and denotes the maximum
level of popularity bias that would be propagated. On the other hand, the remaining eight
CF algorithms are selected as the best-performing ones from different families and applied
via the Python-based library called Cornac (https://cornac.preferred.ai/) (Salah, Truong &
Lauw, 2020). Also, for reproducibility purposes, we left hyperparameters of the algorithms
set to their default values. Note that since the primary motivation of the present study
is to evaluate whether recommendation algorithms propagate disparities among privacy
level-based user personas, we do not provide detailed information about these algorithms’
internal mechanisms for clarity.

Gulsoy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1438 14/39

https://peerj.com
https://grouplens.org/datasets/movielens/1m/
https://www.douban.com/
https://www.yelp.com/
https://cornac.preferred.ai/
http://dx.doi.org/10.7717/peerj-cs.1438


Table 3 Properties of MovieLens-1M (ML), Douban Book (DB), and Yelp datasets.

Dataset # of users # of items # of ratings Sparsity (%) Rating average # of Ratings per item # of Ratings per user

ML 6,040 3,952 1,000,209 95.8 3.58 253.1 165.6
DB 13,024 22,347 792,062 99.7 4.05 35.4 60.8
Yelp 16,239 14,284 198,397 99.9 3.77 13.9 12.2

Table 4 Detailed information about utilized recommendation algorithms.

No Family Recommendation Algorithm Abbreviation

1 Non-personalized Most Popular MP
2 Non-personalized Item Average IA
3 Matrix factorization-based MaximumMargin Matrix Factorization (Weimer,

Karatzoglou & Smola, 2008)
MMMF

4 Matrix factorization-based Weighted Matrix Factorization (Hu, Koren & Volinsky,
2008)

WMF

5 Matrix factorization-based Hierarchical Poisson Factorization (Gopalan, Hofman &
Blei, 2015)

HPF

6 Probabilistic Weighted Bayesian Personalized Ranking (Gantner et al.,
2012)

WBPR

7 Probabilistic Indexable Bayesian Personalized Ranking (Le & Lauw,
2017)

IBPR

8 Clustering-based Spherical k-means (Salah, Rogovschi & Nadif, 2016) SKM
9 Neural networks-based Neural Matrix Factorization (He et al., 2017) NEUMF
10 Neural networks-based Variational Autoencoder for CF (Liang et al., 2018) VAECF

Evaluation metrics
Since the study aims to measure the effect of perturbation and obfuscation processes on
popularity bias in different aspects, nine essential evaluationmetrics are considered through
the experiments. One of them, i.e., Average percentage of recommended items (APRI), is
introduced by Yalcin (2022b) to measure the level of popularity of recommended items
solely. The remaining metrics can be grouped under two main categories, i.e., accuracy
and beyond-accuracy. More specifically, we employ the well-known normalized discounted
cumulative gain (nDCG), precision, recall, and F1-score metrics for measuring accuracy
performances, while average percentage of long-tail items (APLT), novelty, long-tail coverage
(LTC), andEntropy for assessing beyond-accuracy recommendation quality.Here, although
the selected beyond-accuracy metrics focus on measuring different aspects of the provided
recommendations, such as popularity, diversity, coverage, novelty, and inequality, all of
them indeed associate with the well-known fairness concept in RSs literature from the
item perspective (Abdollahpouri & Burke, 2019). We describe these metrics below in detail,
where i1,i2,...,iN denotes the items in the top- N list for user u, i.e., Nu, demonstrated by
a recommendation algorithm.

Average percentage of
recommended items
(APRI):

This metric calculates the average popularity of recommended
items by the algorithms; therefore, higher APRI values for
top- N lists indicate that the recommendation algorithm
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propagates a high-level of undesirable popularity bias (Yalcin,
2022b). More concretely, this metric first calculates the
popularity ratio of each recommended item i, i.e., Pi, by
considering the ratio of the total number of users who rate
the corresponding item to the number of all users in the
system. Then, it computes the average of the P values of the
items in the Top- N list to achieve an APRIu score for the
corresponding user u, as formulated in Eq. (1).

APRIu=

∑
i∈Nu

Pi
N

(1)

Precision, recall, and
F1-score:

To measure the accuracy quality of produced top- N
recommendations, we employ well-known precision, recall,
and F1-score metrics (Yalcin & Bilge, 2022). More specifically,
the precision score of a top- N list (i.e., P@Nu) for a user u
is calculated as the percentage of the recommended N items
suitable for the user. On the other hand, the recall score
of the corresponding recommendation list (i.e., R@Nu) is
computed as the ratio of the number of suggested suitable
items to the number of all rated items in u’s profile. Here,
when determining whether a recommended item is suitable,
we set the threshold value as 3.5, as the literature has reached
a consensus that 4 and 5 are the affirmative ratings in a
5-star rating scale (Bobadilla et al., 2013). Finally, F1-score of
the considered top- N list (i.e., F1@Nu) is calculated as the
harmonic mean of its P@Nu and R@Nu scores, as formulated
in Eq. (2); thus, it provides a balance between such twometrics
measuring accuracy level in different aspects.

F1@Nu= 2×
P@Nu×R@Nu

P@Nu+R@Nu
(2)

Normalized discounted
cumulative gain (nDCG):

Another important accuracy metric used in the experiments
is the nDCG, which considers the actual ratings of the
recommended items and their positions in the produced
top- N list (Yalcin & Bilge, 2022). Supposing that ru,i is u’s
actual rating provided for item i, the DCGu

Nu
and nDCGu

Nu

values of the top- N recommendation list of u is calculated
using Eqs. (3) and (4), respectively.

DCGu
Nu
= ru,i1+

Nu∑
n=2

ru,in
log2(n)

(3)
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nDCGu
Nu
=

DCGu
Nu

IDCGu
Nu

(4)

where IDCGu
Nu

value is the maximum possible gain for u and
is obtained by ideally ordering N items.

Average percentage of
long-tail items (APLT):

Another metric used in the experiments to evaluate the
quality of ranking-based recommendations is the APLT,
measuring what percentage of the recommended items are
from the long-tail part of the popularity curve (Abdollahpouri,
2020). In other words, it demonstrates the ability of the
recommendation algorithms to suggest niche items. When
categorizing items as tail or head, the most commonly utilized
approach is the Pareto Principle (Sanders, 1987), labelling
items that receive 20% of the total ratings as head and the
remaining ones in the catalogue as the tail items. Suppose that
T is the set of assigned tail items via this principle, the APLT
score of a top- N recommendation list produced for user u is
calculated as given in Eq. (5).

APLTu=
|{i,i∈ (T ∩Nu)}|

N
(5)

Note that although APLTu reflects the diversification level
belonging to a particular user. However, the overall APLT
score is an average of such diversification levels, and the
higher APLT scores do not necessarily mean that the
considered algorithm can provide high-quality referrals in
terms of diversity (Abdollahpouri et al., 2021). Nevertheless,
lower APLT scores indicate a general lack of diversity in
recommendation lists. Therefore, we also utilize Entropy as
an alternative metric to measure the diversification level of
all recommendation lists, which is explained in detail in the
following.

Entropy : This metric mainly measures how often the recommendation
algorithms suggest each item in the catalogue (Elahi
et al., 2021). In other words, it reflects the inequality
level across the frequency distribution of the suggested
items. Therefore, higher entropy values for algorithms
indicate more homogeneity in frequencies and diversity
in recommendations, which is more desirable, especially
for system administration, to enable fairer competition in
the market. More concretely, the produced top- N list for
each individual is merged by including the duplicated items.
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Suppose that such constructed union of each top- N list is
represented with Nall and the set of all items in the catalogue
{i1,i2,...,iK } is denoted with K , then the entropy value of a
recommendation algorithm is computed using the formula
given in Eq. (6).

Entropy =−
∑
i∈K

(Pr(i))log2(Pr(i)) (6)

where Pr(i) denotes the relative frequency of item i appearing
in Nall set.

Novelty : As a prominent beyond-accuracy metric, we also use the
novelty in the experiments, which can be considered as the
ability of the recommendation algorithms to present items
that users did not taste before (Yalcin & Bilge, 2022). In other
words, it measures what percentage of a top- N list produced
for a useruhas not been previously rated; thus, the capability of
the algorithms to provide novel alternatives to users. Suppose
that Iu is the set of items rated by user u, the novelty score
of top- N recommendations provided for the corresponding
user, i.e., Noveltyu, can be computed using Eq. (7).

Noveltyu=
|{i,i∈Nu and i∩ Iu=∅}|

N
(7)

Long-tail coverage (LTC): The last employed metric in the experiments is the LTC
measuring how much the provided recommendations cover
the tail part of the item catalogue (Abdollahpouri, 2020). We
first construct a non-recurring aggregation of top- N lists
produced for each user, which we refer to as N. Contrary to
the entropy calculation, the duplicated items in the individual
top- N lists are eliminated here. Then, we determine an
intersection item set, i.e., IN∩T , by considering items that
appear both inN and T simultaneously, where the latter is the
tail item set determined via Pareto Principle (Sanders, 1987).
Finally, we calculate the ratio of the size of IN∩T to the size of
T , as in Eq. ??. Therefore, higher LTC values for algorithms
indicate better coverage of the unpopular, i.e., tail, items in
the recommendations.

LTC =
|IN∩T |
|T |

(8)

Note that higher values of described metrics except for APRI indicate less-biased and
more qualified recommendations in terms of accuracy and beyond-accuracy perspectives.
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Experimentation methodology
In the experiments, we consider four scenarios described in Table 1, where users differ
based on their desired privacy-protection level. Note that all experiments detailed in the
following are realized for such four scenarios separately.

For each user profile scenario, we generate top-10 recommendations for users by using
one of the previously explained algorithms. In doing so, we apply the well-known leave-
one-out experimentation strategy (Kearns & Ron, 1997). Accordingly, we use a particular
user as test data and the remaining ones as train data and compute predictions for all items
for the user by running the considered algorithm on the train set. This process is performed
repeatedly for each user in the dataset. Then, we select top-10 items for each user as the
recommendation list based on their computed predictions in descending order.

To comprehensively evaluate how users concerned with varying privacy levels are
differently affected by the recommendations, we compute precision, recall, F1-score, nDCG,
APRI, and novelty value for the top-10 recommendation of each user and then calculate
their averages to achieve final results. On the other hand, when computing the LTC
and entropy performance of the algorithms, we consider the aggregation of all top-10
recommendations of users, as these metrics are not user-centric and operate on the set of
all recommendations as a whole. Note that when reporting the experimental findings in
the following section, we consider average values of 100 trials realized for each user-profile
scenario to avoid potential inconsistencies during the randomization process of the
perturbation and obfuscation phases.

The benchmark treatment methods for popularity bias problem
One of themainmotivations of this study is to analyze how traditional popularity-debiasing
methods’ performance varies when applied to disguised user profiles. To this end, we
consider three benchmark post-processing treatment methods for the popularity bias issue
concerning the recommendations’ different quality aspects. All methods aim to re-rank
the recommendations by penalizing popular items and utilize a regularization parameter
(i.e., λ) that weights predictive accuracy and one important beyond-accuracy perspective,
such as diversity or coverage.

Two utilized popularity-debiasing methods are variants of the Enhanced Re-ranking
Procedure proposed by Yalcin & Bilge (2021): Augmentative (Aug) and Multiplicative
(Mul). Both approaches re-sort the items in the recommendation lists based on the
synthetic ranking scores, which are estimated for items by inversely weighting their
produced predictions and popularity ratios. However, they follow different mechanisms in
producing such scores, i.e., Mul harshly penalizes popular items by weighting prediction
scores inversely with the popularity ratio of items in a multiplicative way, and Aug uses
prediction scores as a driving force by utilizing item popularities as minor factors. Thus,
due to its design, the former can considerably improve beyond-accuracy quality, which
might significantly decrease accuracy performance. On the other hand, the latter gives
more importance to predictive accuracy while combating popularity bias issues as much
as possible.
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The third utilized algorithm is the famous xQuad (xQd) algorithm (Abdollahpouri,
Burke & Mobasher, 2019), which focuses on achieving final recommendation lists for users
by dynamically selecting items based on their categories: (i) head refers to the popular
items, and (ii) tail refers to the unpopular (i.e., niche) items. The algorithm first selects a
candidate item set by only considering the prediction scores produced by a recommendation
algorithm. Then, it dynamically constructs the final recommendation lists based on the
ranking scores of candidate items. Such scores are calculated at each iteration by weighting
their prediction scores. The weighting process considers both the original propensities of
users on the category of the corresponding item (i.e., head or tail) and the cover ratio of
the current recommendation list for these categories.

ANALYZING ROBUSTNESS OF PRIVACY-PRESERVING
COLLABORATIVE RECOMMENDERS AGAINST
POPULARITY BIAS ISSUE
The first set of conducted experiments aims to observe how much the popularity bias of
the recommenders affects recommendation quality for the base case, i.e., UU, and three
scenarios of privacy protection for users, i.e., BB, PP, and FF. In other words, we measure
how users with varying privacy concerns are differently exposed to the adverse effects
of bias propagation of the algorithms. To this end, we perform several experiments by
considering ten different recommendation algorithms (i.e., MP, IA, MMMF, WMF, HPF,
IBPR, WBPR, SKM, NEUMF, and VAECF) and three datasets (i.e., ML, DB, and Yelp),
which are explained above, and compute the obtained results for nine considered metrics
for four privacy level-based scenarios. Accordingly, Figs. 3 and 9 present the obtained
beyond-accuracy, i.e., APRI, APLT, entropy, novelty, and accuracy, i.e., precision, recall,
F1-score and nDCG results for three datasets, respectively.

As can be seen in the y-axis of Fig. 3, regardless of the utilized algorithm and privacy
level-based user personas, the highest APRI values are usually obtained for the ML,
followed by DB and Yelp datasets, respectively. The main reason for this observation is
that the average number of ratings for each item is higher in the ML compared to DB and
Yelp datasets, as presented in Table 3. This fact inevitably leads to a higher popularity ratio
for items and, thus, higher APRI values for the ML dataset. The MP algorithm is selected
to demonstrate the maximum level of popularity bias propagation in recommendations.
Therefore, as expected, the highest popularity bias in the recommendations is obtained
with theMP algorithm for all settings. In addition, an unexpected finding is that the neural
networks-inspired algorithms, i.e., NEUMF and VAECF, obtain almost identical APRI
results with the MP algorithm, especially in the DB and Yelp datasets. Furthermore, the
SKM can be considered one of the worst-performing algorithms in terms of APRI results
for the ML dataset. Therefore, we can conclude that even if they are enhanced personalized
CF algorithms, they, unfortunately, are biased towards popular items with extreme levels.
On the other hand, the lowest APRI values are usually obtained with the IBPR or WMF
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Figure 3. Obtained APRI results of the utilized algorithms for four different privacy level-based user
profiles on (a) ML, (b) DB, and (c) Yelp datasets.

CF algorithms, they, unfortunately, are biased towards popular items with extreme levels. On the other563

hand, the lowest APRI values are usually obtained with the IBPR or WMF among the utilized algorithms,564

especially in sparser and larger DB and Yelp datasets, which demonstrates that they are highly resistant to565

the popularity bias problem.566

The most important insight gained from Fig. 3, on the other hand, is that since the lowest APRI567

results are usually obtained for the FF case, followed by PP, BB, and UU, as the privacy level of the users568

increases, the average popularity of their received recommendations decreases. This finding is also valid569

for almost all cases, with minor exceptions. Observed differences in the obtained APRI results among570

privacy level-based user personas can also reach significant levels for some settings. For example, for571

the Yelp dataset, the UU is almost five times more than BB for the WBPR algorithm, or the PP is almost572

four times more than FF for the HPF algorithm. Therefore, we can conclude that privacy-protection573

mechanisms for CF algorithms not only eliminate the concerns of the users regarding their privacy but574

also improve the recommendation quality by alleviating the bias of the algorithms against item popularity.575

Moreover, such a finding is more concrete for DB and Yelp than the ML dataset; this is an important576

finding as data collections of real-world applications are typically sparser and larger.577

Observation 1: The most common privacy-preserving approaches for recommenders can effi-
ciently eliminate users’ concerns regarding their confidentiality and provide notable decreases in
the popularity ratio of recommended items simultaneously.

578

Contrary to the obtained APRI values, the achieved APLT results vary within the same interval for all579

utilized datasets, as can be followed by Fig. 4. The reason for this phenomenon is that it is a user-centric580

metric and calculates the average percentage of tail items in the produced top-10 recommendation lists.581

Since we have previously observed from achieved APRI results that the most vulnerable algorithms582

against popularity bias are MP, SKM, NEUMF, and VAECF, they are not talented in featuring tail (i.e.,583
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Figure 3 Obtained APRI results of the utilized algorithms for four different privacy level-based user
profiles on (A) MovieLens-1M (ML), (B) Douban Book (DB), and (C) Yelp datasets.
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among the utilized algorithms, especially in sparser and larger DB and Yelp datasets, which
demonstrates that they are highly resistant to the popularity bias problem.

Themost important insight gained from Fig. 3, on the other hand, is that since the lowest
APRI results are usually obtained for the FF case, followed by PP,BB, andUU, as the privacy
level of the users increases, the average popularity of their received recommendations
decreases. This finding is also valid for almost all cases, with minor exceptions. Observed
differences in the obtained APRI results among privacy level-based user personas can also
reach significant levels for some settings. For example, for the Yelp dataset, the UU is
almost five times more than BB for the WBPR algorithm, or the PP is almost four times
more than FF for the HPF algorithm. Therefore, we can conclude that privacy-protection
mechanisms for CF algorithms not only eliminate the concerns of the users regarding
their privacy but also improve the recommendation quality by alleviating the bias of the
algorithms against item popularity. Moreover, such a finding is more concrete for DB and
Yelp than the ML dataset; this is an important finding as data collections of real-world
applications are typically sparser and larger.

Gulsoy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1438 21/39

https://peerj.com
https://doi.org/10.7717/peerjcs.1438/fig-3
http://dx.doi.org/10.7717/peerj-cs.1438


Box 1. Observation 1:

The most common privacy-preserving approaches for recommenders can efficiently
eliminate users’ concerns regarding their confidentiality and provide notable decreases
in the popularity ratio of recommended items simultaneously.

Contrary to the obtained APRI values, the achieved APLT results vary within the same
interval for all utilized datasets, as can be seen in Fig. 4. The reason for this phenomenon
is that it is a user-centric metric and calculates the average percentage of tail items in the
produced top-10 recommendation lists. Since we have previously observed from achieved
APRI results that the most vulnerable algorithms against popularity bias are MP, SKM,
NEUMF, and VAECF, they are not talented in featuring tail (i.e., niche) items in their
produced recommendation lists regardless of the considered privacy level-based user
personas, as expected. On the other hand, the WMF and IBPR are the most prominent
algorithms in providing diverse recommendations, as they achieve the highestAPLT results.
Also, the superiority of these algorithms is more visible for sparser and larger DB and Yelp
datasets. The main reason for this observation could be that the size of constructed tail item
set for the ML is notably smaller than those formed for these datasets; thus, the chance of
including the tail items in the users’ recommendation lists would be significantly increased
in these two datasets.

Another crucial finding observed from Fig. 4 is that except for a few CF approaches
(e.g., neural networks-inspired ones), the highest APLT scores of the recommendations
are usually achieved for FF users, followed by PP, BB, and UU. This result reinforces
that as the privacy level of users increases, their received recommendations become more
qualified in terms of diversity aspect. Additionally, such differences in the obtained APLT
scores are clearer for Yelp and DB datasets. The main reason for this consequence is that
increasing privacy protection of users by including fake ratings in their profiles leads to
significant changes in the distribution of the ratings, which makes algorithms more robust
against popularity bias, as previously discussed in the APRI results. This, in turn, intuitively
increases the probability of including tail items in the final recommendations.

Similar to the achieved APLT values, the obtained entropy, novelty, and LTC scores
of the algorithms spread out in the same range, i.e., [0, 1], for all datasets regardless of
the privacy level-based user profiles by their design, as can be followed by Figs. 5 and 7,
respectively. We also observe from Fig. 5 that the lowest information entropy results are
usually obtained with SKM, NEUMF, and VAECF algorithms. Therefore, we conclude
that neural networks-inspired algorithms are highly unsuccessful in equally representing
candidate items in the catalogue in their recommendations.

Compared to other algorithms, such weaknesses of the SKM, NEUMF, and VAECF also
appear in providing recommendations that are qualified in terms of novelty and catalogue
coverage, as seen in Figs. 6 and 7, as they usually have the lowest novelty and LTC scores
for each considered privacy level-based user personas. Also, since their LTC results are
generally around zero, we can conclude that these algorithms, including HPF, are highly
inefficient for item/service providers attempting to sell each product at least once via
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Figure 4. Obtained APLT results of the utilized algorithms for four different privacy level-based user
profiles on (a) ML, (b) DB, and (c) Yelp datasets.

user personas, as expected. On the other hand, the WMF and IBPR are the most prominent algorithms in585

providing diverse recommendations, as they achieve the highest APLT results. Also, the superiority of586

these algorithms is more visible for sparser and larger DB and Yelp datasets. The main reason for this587

observation could be that the size of constructed tail item set for the ML is notably smaller than those588

formed for these datasets; thus, the chance of including the tail items in the users’ recommendation lists589

would be significantly increased in these two datasets.590

Another crucial finding observed from Fig. 4 is that except for a few CF approaches (e.g., neural591

networks-inspired ones), the highest APLT scores of the recommendations are usually achieved for FF592

users, followed by PP, BB, and UU. This result reinforces that as the privacy level of users increases,593

their received recommendations become more qualified in terms of diversity aspect. Additionally, such594

differences in the obtained APLT scores are clearer for Yelp and DB datasets. The main reason for this595

consequence is that increasing privacy protection of users by including fake ratings in their profiles leads596

to significant changes in the distribution of the ratings, which makes algorithms more robust against597

popularity bias, as previously discussed in the APRI results. This, in turn, intuitively increases the598

probability of including tail items in the final recommendations.599

Similar to the achieved APLT values, the obtained Entropy, Novelty, and LTC scores of the algorithms600

spread out in the same range, i.e., [0, 1], for all datasets regardless of the privacy level-based user profiles601

by their design, as can be followed by Figs. [5 - 7], respectively. We also observe from Fig. 5 that the602

lowest information entropy results are usually obtained with SKM, NEUMF, and VAECF algorithms.603

Therefore, we conclude that neural networks-inspired algorithms are highly unsuccessful in equally604

representing candidate items in the catalogue in their recommendations.605

Compared to other algorithms, such weaknesses of the SKM, NEUMF, and VAECF also appear in606

providing recommendations that are qualified in terms of novelty and catalogue coverage, as seen in607

Figs. 6 and 7, as they usually have the lowest Novelty and LTC scores for each considered privacy608
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Figure 4 Obtained APLT results of the utilized algorithms for four different privacy level-based user
profiles on (A) MovieLens-1M (ML), (B) Douban Book (DB), and (C) Yelp datasets.

Full-size DOI: 10.7717/peerjcs.1438/fig-4

suggestions covering the whole catalogue. Also, we observe that the novelty scores of all
algorithms, including neural networks-based ones, are lesser for ML than other DB and
Yelp datasets. The main reason for this result is that the average number of ratings per
user is around 166 for ML, while 61 and 12 for DB and Yelp datasets, respectively, as can
be followed by Table 3. Such differences in data collections make the recommendation
algorithms superior to the DB and Yelp datasets in locating items unknown/inexperienced
by the individuals in the recommendations, resulting in higher novelty scores for such
sparser and larger datasets.

On the other hand, the IBPR and WMF, especially the former one, achieve the highest
entropy, novelty, and LTC outcomes regardless of the considered datasets and privacy
level-based user personas, as seen in Figs. 5–7. In other words, the recommendations of
these two algorithms are highly qualified in terms of covering and representing items
in the whole catalogue fairly and featuring items that individuals have not experienced.
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Figure 5. Obtained Entropy results of the utilized algorithms for four different privacy level-based user
profiles on (a) ML, (b) DB, and (c) Yelp datasets.

these algorithms, including HPF, are highly inefficient for item/service providers attempting to sell each610

product at least once via suggestions covering the whole catalogue. Also, we observe that the Novelty611

scores of all algorithms, including neural networks-based ones, are lesser for ML than other DB and Yelp612

datasets. The main reason for this result is that the average number of ratings per user is around 166613

for ML, while 61 and 12 for DB and Yelp datasets, respectively, as can be followed by Table 3. Such614

differences in data collections make the recommendation algorithms superior to the DB and Yelp datasets615

in locating items unknown/inexperienced by the individuals in the recommendations, resulting in higher616

Novelty scores for such sparser and larger datasets.617

On the other hand, the IBPR and WMF, especially the former one, achieve the highest Entropy,618

Novelty, and LTC outcomes regardless of the considered datasets and privacy level-based user personas, as619

seen in Figs. [5 - 7]. In other words, the recommendations of these two algorithms are highly qualified in620

terms of covering and representing items in the whole catalogue fairly and featuring items that individuals621

have not experienced. Remember from the APLT analysis that IBPR and WMF are the most prominent622

algorithms in featuring items in the long-tail part of the catalogue in their recommendations, as well.623

Observation 2: In producing qualified recommendations in terms of beyond-accuracy aspects,
i.e., diversity, novelty, equality, and catalogue coverage, the most successful algorithms are IBPR
and WMF, while the least successful ones are mostly neural networks-inspired algorithms, i.e.,
NEUMF and VAECF.

624

Comparing the privacy level-based user personas, we observe from Fig.5 that the highest entropy625

values are usually achieved for users highly concerned with their privacy, i.e., FF users, followed by PP626

and BB, respectively. Therefore, as the privacy-protection level increases for individuals, the likelihood627
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Figure 5 Obtained Entropy results of the utilized algorithms for four different privacy level-based
user profiles on (A) MovieLens-1M (ML), (B) Douban Book (DB), and (C) Yelp datasets.

Full-size DOI: 10.7717/peerjcs.1438/fig-5

Remember from theAPLT analysis that IBPR andWMF are themost prominent algorithms
in featuring items in the long-tail part of the catalogue in their recommendations, as well.

Box 2. Observation 2:

In producing qualified recommendations in terms of beyond-accuracy aspects, i.e.,
diversity, novelty, equality, and catalogue coverage, the most successful algorithms are
IBPR andWMF, while the least successful ones are mostly neural networks-inspired
algorithms, i.e., NEUMF and VAECF.

Comparing the privacy level-based user personas, we observe from Fig. 5 that the
highest entropy values are usually achieved for users highly concerned with their privacy,
i.e., FF users, followed by PP and BB, respectively. Therefore, as the privacy-protection level
increases for individuals, the likelihood of receivingmore qualified recommendationswhere
items are equally represented improves with minor exceptions. As can be seen in Fig. 6, this
advantage for privacy-sensitive users is also valid for obtaining novel recommendations, as
the highest novelty scores are again obtained for FF, followed by PP and BB, respectively.

However, the differences in the novelty scores among the privacy level-based user
personas seem to be more visible for the ML while limited for sparser and larger DB and
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Figure 6. Obtained Novelty results of the utilized algorithms for four different privacy level-based user
profiles on (a) ML, (b) DB, and (c) Yelp datasets.

exceptions. As can be followed by Fig.6, this advantage for privacy-sensitive users is also valid for629

obtaining novel recommendations, as the highest Novelty scores are again obtained for FF, followed by630

PP and BB, respectively.631

However, the differences in the Novelty scores among the privacy level-based user personas seem to632

be more visible for the ML while limited for sparser and larger DB and Yelp datasets; this occurs due to633

the same reason related to dataset characteristics explained above. Additionally, even if such differences634

among privacy level-based user personas are not quite visible for the LTC results achieved for DB and635

Yelp datasets, it can be concluded that the most sensitive users in the ML against privacy protection can636

receive more qualified referrals in terms of catalogue coverage.637

Observation 3: As the level of privacy provided for users improves, their referrals also become
more qualified in terms of diversity, novelty, catalogue coverage, and fairness (i.e., equality in
representing items).

638

Ranking accuracy is one of the most important criteria for assessing the quality of provided recom-639

mendations. Therefore, we perform an additional set of experiments where we comprehensively analyze640

how recommendation algorithms perform differently for privacy level-based user personas in terms of641

accuracy by utilizing four important accuracy-oriented metrics (i.e., Precision, Recall, F1-score, and642

nDCG). To this end, we present the obtained Precision and Recall scores of ten algorithms for four user643

profiles in Fig. 8, and F1-score and nDCG results in Fig. 9.644

Due to the well-known trade-off between accuracy and beyond-accuracy recommendation quality, we645

expect that the algorithms performing well in beyond-accuracy aspects would not provide satisfactory646

ranking accuracy or vice versa. Such a contradiction is also valid for privacy level-based user personas,647

i.e., users cannot simultaneously receive recommendations of good quality in both beyond-accuracy and648

accuracy aspects. The accuracy-focused experimental results validate this phenomenon. For instance, the649
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Figure 6 Obtained novelty results of the utilized algorithms for four different privacy level-based user
profiles on (A) MovieLens-1M (ML), (B) Douban Book (DB), and (C) Yelp datasets.

Full-size DOI: 10.7717/peerjcs.1438/fig-6

Yelp datasets; this occurs due to the same reason related to dataset characteristics explained
above. Additionally, even if such differences among privacy level-based user personas are
not quite visible for the LTC results achieved for DB and Yelp datasets, it can be concluded
that themost sensitive users in theML against privacy protection can receivemore qualified
referrals in terms of catalogue coverage.

Box 3. Observation 3:

As the level of privacy provided for users improves, their referrals also become more
qualified in terms of diversity, novelty, catalogue coverage, and fairness (i.e., equality
in representing items).

Ranking accuracy is one of the most important criteria for assessing the quality of
provided recommendations. Therefore, we perform an additional set of experiments
where we comprehensively analyze how recommendation algorithms perform differently
for privacy level-based user personas in terms of accuracy by utilizing four important
accuracy-oriented metrics (i.e., precision, recall, F1-score, and nDCG). To this end, we
present the obtained precision and recall scores of ten algorithms for four user profiles in
Fig. 8, and F1-score and nDCG results in Fig. 9.
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Figure 7. The obtained LTC results of the utilized algorithms for four different privacy level-based user
personas on (a) ML, (b) DB, and (c) Yelp datasets.

algorithms succeed in beyond-accuracy quality, e.g., the IBPR, has usually lower Precision, Recall, F1-650

score, and nDCG results than others, as can be followed by Figs 8 and 9. On the other hand, the algorithms651

that are not succeeding in beyond-accuracy quality, e.g., neural networks-inspired ones (NEUMF and652

VAECF), show relatively better performance than others in providing accurate recommendations. Also,653

we can conclude that the WBPR is another successful algorithm to achieve accurate recommendations.654

However, the obtained results demonstrate that the WMF algorithm shines out among other algorithms in655

ranking accuracy when utilized without any privacy protection mechanism, i.e., the case of UU. This is an656

interesting finding since we have previously discussed that it is one of the best-performing algorithms657

regarding beyond-accuracy aspects. Therefore, we can conclude that the WMF can be a good option for a658

traditional recommendation scenario where no privacy protection is applied.659

Observation 4: For traditional recommendation scenarios where any level of privacy protection
is provided, the WMF is the most prominent algorithm considering accuracy and beyond-accuracy
aspects simultaneously. Also, the most accurate recommendations are usually obtained by the
VAECF and WBPR algorithms.

660

As can be followed by Figs. 8 and 9, users receive more accurate recommendations in the UU case661

compared to privacy-preserving scenarios for almost all metrics; this is also valid for all settings except for662

non-personalized primitive MP and IA recommendation methods. When comparing privacy level-based663

user personas, the lower Precision, Recall, F1-score and nDCG results are obtained for FF, followed by664

PP and BB. This finding is valid for all personalized CF algorithms in the ML; however, the differences665

among such privacy level-based user personas seem to be limited for NEUMF and VAECF algorithms on666

DB and Yelp datasets. Therefore, we can conclude that as the privacy degree adjusted for users improves,667

19/28

Figure 7 The obtained LTC results of the utilized algorithms for four different privacy level-based
user personas on (A) MovieLens-1M (ML), (B) Douban Book (DB), and (C) Yelp datasets.

Full-size DOI: 10.7717/peerjcs.1438/fig-7

Due to the well-known trade-off between accuracy and beyond-accuracy recommen-
dation quality, we expect that the algorithms performing well in beyond-accuracy aspects
would not provide satisfactory ranking accuracy or vice versa. Such a contradiction
is also valid for privacy level-based user personas, i.e., users cannot simultaneously
receive recommendations of good quality in both beyond-accuracy and accuracy aspects.
The accuracy-focused experimental results validate this phenomenon. For instance, the
algorithms succeed in beyond-accuracy quality, e.g., the IBPR, has usually lower precision,
recall, F1-score, and nDCG results than others, as can be seen in Figs. 8 and 9. On the
other hand, the algorithms that are not succeeding in beyond-accuracy quality, e.g., neural
networks-inspired ones (NEUMF and VAECF), show relatively better performance than
others in providing accurate recommendations. Also, we can conclude that the WBPR
is another successful algorithm to achieve accurate recommendations. However, the
obtained results demonstrate that theWMF algorithm shines out among other algorithms
in ranking accuracy when utilized without any privacy protection mechanism, i.e., the
case of UU. This is an interesting finding since we have previously discussed that it is one
of the best-performing algorithms regarding beyond-accuracy aspects. Therefore, we can
conclude that the WMF can be a good option for a traditional recommendation scenario
where no privacy protection is applied.
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Figure 8. The obtained Precision and Recall outcomes of the utilized algorithms for four different
privacy level-based user personas. Precision results are presented in (a), (c), and (e) for the ML, DB, and
Yelp datasets, respectively, while Recall results are presented in (b), (d), and (f).

consequence is that the algorithms can model individuals better when their original profiles are handled669

and thus provide highly accurate recommendations; however, their performances significantly diminish670

when their disguised profiles are considered. Note that this finding parallels previous research on PPCF671

topics (Bilge and Polat, 2013).672
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Figure 8 The obtained precision and recall outcomes of the utilized algorithms for four different pri-
vacy level-based user personas. Precision results are presented in (A), (C), and (E) for the ML, DB, and
Yelp datasets, respectively, while recall results are presented in (B), (D), and (F).

Full-size DOI: 10.7717/peerjcs.1438/fig-8

Box 4. Observation 4:

For traditional recommendation scenarios where any level of privacy protection
is provided, theWMF is the most prominent algorithm considering accuracy and
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Figure 9. The obtained F1-score and nDCG outcomes of the utilized algorithms for four different
privacy level-based user personas. F1-score results are presented in (a), (c), and (e) for the ML, DB, and
Yelp datasets, respectively, while nDCG results are presented in (b), (d), and (f).

ANALYZING HOW POPULARITY-DEBIASING APPROACHES DIFFERENTLY674

PERFORM FOR PRIVACY LEVEL-BASED USER PERSONAS675

This section presents the experimental results to investigate how the conventional popularity-debiasing676

methods perform for varying privacy level-based user personas. To this end, we consider three benchmark677

treatment methods previously explained, i.e., Aug, Mul, and xQd, and measure their effects on user678

profiles with varying privacy levels (i.e., BB, PP, and FF) and original profiles (i.e., UU). We realize679

this set of experiments on the Yelp dataset, as it is sparser and larger than others, like in most real-world680

applications. In addition, since the differences between privacy level-based user personas are more681

obvious for the HPF algorithm, we only consider this algorithm for the recommendation phase to see the682
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Figure 9 The obtained F1-score and nDCG outcomes of the utilized algorithms for four different pri-
vacy level-based user personas. F1-score results are presented in (A), (C), and (E) for the MovieLense-1M
(ML), Douban Book (DB), and Yelp datasets, respectively, while nDCG results are presented in (B), (D),
and (F).

Full-size DOI: 10.7717/peerjcs.1438/fig-9

beyond-accuracy aspects simultaneously. Also, the most accurate recommendations
are usually obtained by the VAECF andWBPR algorithms.

As can be followed by Figs. 8 and 9, users receive more accurate recommendations in
the UU case compared to privacy-preserving scenarios for almost all metrics; this is also
valid for all settings except for non-personalized primitive MP and IA recommendation
methods. When comparing privacy level-based user personas, the lower precision, recall,
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F1-score and nDCG results are obtained for FF, followed by PP and BB. This finding is valid
for all personalized CF algorithms in the ML; however, the differences among such privacy
level-based user personas seem to be limited for NEUMF and VAECF algorithms on DB
and Yelp datasets. Therefore, we can conclude that as the privacy degree adjusted for users
improves, the accuracy of their received recommendations becomes worse in general. The
main reason for this consequence is that the algorithms can model individuals better when
their original profiles are handled and thus provide highly accurate recommendations;
however, their performances significantly diminish when their disguised profiles are
considered. Note that this finding parallels previous research on PPCF topics (Bilge &
Polat, 2013).

Box 5. Observation 5:

As the level of privacy provided for users improves, the accuracy of their received rec-
ommendations diminishes.

ANALYZING HOW POPULARITY-DEBIASING APPROACHES
DIFFERENTLY PERFORM FOR PRIVACY LEVEL-BASED
USER PERSONAS
This section presents the experimental results to investigate how the conventional
popularity-debiasing methods perform for varying privacy level-based user personas.
To this end, we consider three benchmark treatment methods previously explained, i.e.,
Aug, Mul, and xQd, and measure their effects on user profiles with varying privacy levels
(i.e., BB, PP, and FF) and original profiles (i.e., UU ). We realize this set of experiments on
the Yelp dataset, as it is sparser and larger than others, like in most real-world applications.
In addition, since the differences between privacy level-based user personas are more
obvious for the HPF algorithm, we only consider this algorithm for the recommendation
phase to see the debiasing methods’ effects better and for the sake of clarity. In these
settings, we present the obtained improvements/deteriorations in beyond-accuracy (i.e.,
APRI, APLT, entropy, novelty, and LTC) and accuracy (i.e., precision, recall, F1-score, and
nDCG) results with percentages when the Aug, Mul, or xQd applied in Figs. 10 and 11,
respectively.
As can be seen in Fig. 10, we observe that the most significant reductions for the APRI

are obtained for FF, followed by PP, BB, and UU. Considering that lower values for this
metric indicate less-biased recommendations against item popularity, we can conclude
that more sensitive individuals to their confidentiality benefit more from such treatment
methods against popularity bias. On the other hand, we have interestingly observed that
the debiasing methods show worse performances for such privacy-sensitive users in terms
of accuracy. Note that the most severe deteriorations in ranking accuracy are observed for
FF, followed by PP, BB, and UU, as can be followed by all precision, recall, F1-score, and
nDCG results given in Fig. 11. This observation is interesting since the accuracy-concerned
metrics usually check how much the recommended items hit with the items rated in users’
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improvements/deteriorations in beyond-accuracy (i.e., APRI, APLT, Entropy, Novelty, and LTC) and684

accuracy (i.e., Precision, Recall, F1-score, and nDCG) results with percentages when the Aug, Mul, or685

xQd applied in Figs 10 and 11, respectively.686
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Figure 10. The obtained (a) APRI, (b) APLT, (c) Entropy, (d) Novelty, and (e) LTC improvement or
deterioration level when the Aug, Mul, and xQd popularity-debiasing methods are applied for different
privacy level-based user personas in the Yelp dataset.

As can be followed by Fig. 10, we observe that the most significant reductions for the APRI are687

obtained for FF, followed by PP, BB, and UU. Considering that lower values for this metric indicate688

less-biased recommendations against item popularity, we can conclude that more sensitive individuals689

to their confidentiality benefit more from such treatment methods against popularity bias. On the other690

hand, we have interestingly observed that the debiasing methods show worse performances for such691
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Figure 10 The obtained (A) APRI, (B) APLT, (C) entropy, (D) novelty, and (E) LTC improvement or
deterioration level when the Aug, Mul, and xQd popularity-debiasing methods are applied for different
privacy level-based user personas in the Yelp dataset.

Full-size DOI: 10.7717/peerjcs.1438/fig-10

original profiles. Therefore, we expect that the overall accuracy performance improves with
recommending popular items.

Contrary to this pattern, on the other hand, the greatest improvements inAPLT, entropy,
novelty, and LTC results of the recommendations are obtained for UU, followed by BB,
PP, and FF. This trend is also valid for all utilized popularity-debiasing methods, i.e.,
Aug, Mul, and xQd. In other words, the considered popularity-debiasing methods are
more effective when the original profiles of the users are considered, and their ability to
enhance beyond-accuracy recommendation quality decreases as the users’ privacy level
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and nDCG results given in Fig. 11. This observation is interesting since the accuracy-concerned metrics694

usually check how much the recommended items hit with the items rated in users’ original profiles.695

Therefore, we expect that the overall accuracy performance improves with recommending popular items.696
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Figure 11. The obtained (a) Precision, (b) Recall, (c) F1-score, and (d) nDCG improvement or
deterioration level when the Aug, Mul, and xQd popularity-debiasing methods are applied for different
privacy level-based user personas in the Yelp dataset.

Contrary to this pattern, on the other hand, the greatest improvements in APLT, Entropy, Novelty,697

and LTC results of the recommendations are obtained for UU, followed by BB, PP, and FF. This trend698

is also valid for all utilized popularity-debiasing methods, i.e., Aug, Mul, and xQd. In other words, the699

considered popularity-debiasing methods are more effective when the original profiles of the users are700

considered, and their ability to enhance beyond-accuracy recommendation quality decreases as the users’701

privacy level increases. This is an unsurprising finding since we have previously observed that as the level702

of privacy provided for users increases, the beyond-accuracy qualities of their received recommendations703

are notably improved. Thus, the effects of the utilized debiasing methods become limited for individuals704

who are more concerned about their privacy. In addition, such privacy-sensitive individuals also seem705

to be disadvantageous in terms of accuracy, as the highest decrements in ranking accuracy are usually706

obtained for FF, followed by BB, PP, and UU, as discussed above.707

One of the most important findings is that applying one of the highly prominent popularity-debiasing708

methods (i.e., the xQd) for FF users even significantly deteriorates recommendation quality (note709

that its improvements are negative for APLT and Novelty while positive for APRI). This important710

finding demonstrates that applying privacy-protection procedures to user profiles might render some711

well-performing popularity-debiasing methods useless. The empirical outcomes also suggest that the712

most successful popularity-debiasing method differs for privacy level-based user personas depending on713

the considered quality aspect.714
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Figure 11 The obtained (A) precision, (B) recall, (C) F1-score, and (D) nDCG improvement or deteri-
oration level when the Aug, Mul, and xQd popularity-debiasing methods are applied for different pri-
vacy level-based user personas in the Yelp dataset.

Full-size DOI: 10.7717/peerjcs.1438/fig-11

increases. This is an unsurprising finding since we have previously observed that as the
level of privacy provided for users increases, the beyond-accuracy qualities of their received
recommendations are notably improved. Thus, the effects of the utilized debiasingmethods
become limited for individuals who are more concerned about their privacy. In addition,
such privacy-sensitive individuals also seem to be disadvantageous in terms of accuracy,
as the highest decrements in ranking accuracy are usually obtained for FF, followed by BB,
PP, and UU, as discussed above.

One of the most important findings is that applying one of the highly prominent
popularity-debiasing methods (i.e., the xQd) for FF users even significantly deteriorates
recommendation quality (note that its improvements are negative for APLT and novelty
while positive for APRI ). This important finding demonstrates that applying privacy-
protection procedures to user profiles might render some well-performing popularity-
debiasing methods useless. The empirical outcomes also suggest that the most successful
popularity-debiasing method differs for privacy level-based user personas depending on
the considered quality aspect.
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Box 6. Observation 6:

As users’ privacy protection improves, the popularity-debiasing methods can perform
better in achieving less-biased recommendations against item popularity. However,
their effects on both accuracy and beyond-accuracy recommendation quality consid-
erably diminish for users who are more sensitive to their confidentiality. Some of such
treatment methods even become useless for fiery fundamentalists, i.e., users hypersen-
sitive to their privacy.

CONCLUSION AND FUTURE WORK
One main task of recommender systems is to produce appropriate referrals to users by
protecting their privacy. Themost common approach for this aim ismasking the list of rated
items and actual ratings provided for these items. Then, any collaborative recommender is
trained on disguised preference data rather than the original user-item matrix. Since the
main reason for the well-known popularity bias issue of the recommenders is the observed
imbalances in the rating distribution, such privacy-protection procedure might lead to
significant changes in the degree of observed bias in the recommendations and, worse,
make treatment methods developed for this problem less useful.

Therefore, in this study, we mainly analyze how popularity bias inclinations of the
recommenders vary for four user personas defined according to varying privacy protection
levels. We also investigate how the performances of three benchmark popularity-debiasing
methods change when such privacy level-based user personas are considered. One of the
most important findings derived from the conducted comprehensive experimental studies is
that disguising the actual preference data of individuals not only eliminates users’ concerns
regarding their confidentiality but also makes the recommendations less biased towards
item popularity at the same time. In other words, increasing the privacy level for users
makes the collaborative recommenders more robust against the popularity bias problem.
Thus, more sensitive users about their privacy can receivemore qualified recommendations
regarding beyond-accuracy aspects like diversity, novelty, catalogue coverage and fairness
(i.e., equality in representing items), even though they bearably sacrifice from accuracy.
Another important finding observed from our analysis is that as users’ privacy protection
level improves, even if the performance of the considered popularity-debiasing methods
enhances in featuring less-popular items in their recommendations, their effects on both
beyond-accuracy and accuracy recommendation quality considerably diminish. Some of
them even render impractical for individuals hypersensitive to their privacy.

When constructing privacy level-based user personas, we consider the randomized
perturbation techniques as one of the most common approaches to provide user
confidentiality. However, our analysis can be extended by considering alternative privacy-
preserving methods, such as differential privacy and cryptographic techniques. Also, there
is a need for novel popularity-debiasing methods that will not be affected by the data

Gulsoy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1438 32/39

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1438


disguising procedure and thus show comparable performances for the scenario of users’
privacy is preserved.
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