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SOME ALGEBRAIC PROPERTIES OF GENERALIZED ¢—
CESARO MATRIX C, (q)
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Abstract. In this paper, we define the generalized g-Cesaro matrix by using generalized Cesaro
matrix and g-Cesaro matrix. We investigate normality, self-adjointedness and Hilbert-Schmidt
properties of generalized g-Cesaro matrices.

2010 Mathematics Subject Classification: 47A05; 47A16; 47B15; 32A35

Keywords: Cesaro matrix, g-Cesaro matrix, generalized g-Cesaro matrix

1. INTRODUCTION

In [1], Bustoz and Gordillo defined the g-Cesaro matrix. For 0 < ¢ < 1, g-Cesaro
matrix Cj (¢q) is defined by

n—k
q
Cpg =1 ltat-+q" 2 O<nc<k .
0 , n<k

_ n+1 ]
the entries of Cesaro matrix are

1
Cok = P O<k§n
" 0 , n<k

Since ¢y () — , for ¢ — 1, the g-analog of C| = (¢, ) is matrix C; (¢) where

and g—analog of the integer n is

=12 (a# D).

In [3] Durna and Tiirkay obtained the spectrum of g-Cesaro matrix Cj (g) on the
space of convergent sequences c¢. Also, they calculated spectral decomposition in the
sense of Goldberg. In [6] El Shabrawy investigated boundedness, compactness and
spectra of g-Cesaro matrix Cj (g).

Let us denote the space H (D) = {f : D — C: f is an analytic function}, on D the
standard Hardy space H? (1 < p <) where D is a unit disk, and p-summable
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complex-valued sequences on the set of non-negative integers . You can see [7]
for details.

Previously, some authors have generalized various matrix transformations. For
example, Young generalized the Cesaro matrix in his PhD thesis ([10]). Forall f € H?
the generalized Cesaro operator with the symbol g is defined as

Here, g is analytic in D and has Taylor series representation g (z) = Y7 a 7/, where
{z"'}"_ is the standard basis of H2. The matrix form of Cg in the standard basis is

aw 0 0 0
ady
c?zc%aoo

c_| 24 @

Tl d A a
4 4 4 4

And so, one can express entries of matrix Cy as follows:

Ap_ i .
(cq) .= o 2 .
§/nj 0 , n<jy

For all 0 < ¢ < 1 we can define the generalized g—Cesaro matrix C, (¢) by

agp 0
1
9 ai —Aa
144 1+g¢g
Ce(g) = q* q 1

a a a
T+q+q " T+q+@ " T+q+q "

and we have

n—k

—4 ____q, 0<k<n
C — ]+q+...+qn—1an k> SR> ) 1.1
(¢4 (@) { g <k (1.1)

Since limg_,1- (¢4 (¢)),;, = “=%, matrix C, (¢) is a g—analog of generalized Cesaro
matrix C,. If we take g (z) = I%Z and limit for ¢ — 1, then we obtain C, (¢) = C(q).
Thus generalized g-Cesaro matrix contains both of generalized Cesaro matrix and

ordinary Cesaro matrix.
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The conjugate transpose of the matrix C, (g) is
2

w L@ —L &
1—1H] l1+q+4°
: 0 1@ s
G (q) = l1+gq 1+ql+q
0 0 — o
T+q+q™
and so,
n—k
— T % 0<n<k
c; = Trgttq 19—k ="=" 1.2

Inspired by the relationship between Rhaly and Cesaro matrices, Durna and Yildirim
in [4] defined the generalized Rhaly matrix using the generalized Cesaro matrix. They
also investigated the topological properties of the generalized Rhaly matrix. In [5],
Durna and Yildirim show that if an infinite matrix B is commutative with every gen-
eralized terraced matrix, then B = kI, where I is a unit matrix and k € C. Also, they
investigated normality and self-adjointedness of generalized terraced matrix. Now, let
us examine normality and self-adjointedness of generalized g-Cesaro matrix Cq (g).

2. RESULTS
Theorem 1. C, (q) is a normal matrix iff for c € C, g(z) =c.
Proof. We consider (1,1) - entries of C¢ (¢) Cy (¢) and C (q) Cy (g):

[Ce(g)C Z ¢ (@)

k=1
= (cg (@)1 ( (q))n
= aodo —|ao|

and

C (@) Ce ()], =; (c3 (@), (s (@)ye

qkfl qkfl

= apdo + ay—
0¢0 ,;21+q+-~-+qk‘1 k 11+q+--~+q

S q-! ? 2
= |ag|” + aip—1|" .
oo ,;2(1+q+~~+q’<-1> x|

qkfl
I+g+--gc1
we obtain that for all i > 1, ¢; = 0. And so, g(z) = ao, ap € C.

—1 ak—1

2
Since Cy (g) is a normal matrix, we get Y7, ( ) |lag_1|* = 0. From here,
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Conversely, if g(z) = ao, ap € C then we have

ao 0 0 0
1
T ap 0 0
q
Ce(gq) = 1 ’
0 0 5
l+q+gq
hence C, (g) is normal. O

Corollary 1. C) is not normal.

Corollary 2. C, (q) is not normal.

Theorem 2. C, (q) is a self-adjoint matrix iff for c € R, g (z) =c.
Proof. From (1.1) and (1.2), ag = ap and

4 ay = q2 ay = q3 az--- =
I+q l+q+q " 1+q+¢+¢
Since, foralln € N, #ﬁ.wn #£ 0, then
apg=ap, day :a2:a3:...:0‘

Hence ap € R and g (z) = ap € R.
The other direction is obvious. O

Corollary 3. C, is not self-adjoint.

Corollary 4. C (q) is not self-adjoint.

Note that if n > 0 and if 7;; = O for j <i+n, we say that T is an n-triangular
operator matrix ([9]).

Lemma 1 ([9, Theorem 2]). Let T = (T;;) € L <r§07{) be a 1—triangular oper-
ator matrix. Suppose that T; ;| has dense range for all i. Then T is cyclic.

Lemma 2 ([2, Proposition 3.6]). Let T be a triangular operator whose diagonal
entries with respect to some orthonormal basis for H are distinct. Then T is cyclic.

Theorem 3. C; (q) is cyclic for all g € B, where
Z
B=<g:D—>C: /g (t)dt is a bounded mean oscillation function
0

Proof. Suppose that g (0) = 0. From Lemma 1, we obtain the state of the theorem.
Let g (0) # 0. Therefore the diagonal entries of matrix C; (¢) are distinct. And so,
from Lemma 2, C; (g) is cyclic. O
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Theorem 4. If gg (z) = g (Bz) with |B| = 1, then Cy, (q) is unitarily equivalent to
C¢ (q). We denote this by Cy, (q) = Cq (q) -

Proof. Define the map Uy : H> — H* by Ug (f) (z) = f (Bz). It is easy to see that
Up is unitary with Ué‘ = UE‘

Now, to show the unitary equivalence, we must prove that Ug Cy, (q)Up = C; (q).

The matrix representation of Up in the basis {z"_l }::1 is the diagonal matrix

diag {p"} . Moreover, we know that (UB)* =Ug= (Up) - Using these matrix rep-
resentations we have UgCy, (q)Up = C¢(q) and consequently Cy (q) = C,(q) is
obtained. n

Corollary 5. If B € d(ID), then the spectrum of C . (q) is

e | <2 L
l+qg| 14+g¢

Proof. This is immediate from the unitary equivalence and [0], Theorem 2.2. [

s (. (9) =o(Cla) = {xe c:

1—PBz

In [8] Mursalenn et al. studied the spectrum and Hilbert Schmidt properties of gen-
eralized Rhaly matrices. Now, let us show that C, (¢) is a Hilbert-Schmidt operator.
For this, we shall give the following lemma.

Lemma 3 ([8]). Ifu € Z, Bj_1 =0, By = Z:J-kaor k=j,...,nand (a) is a
positive decreasing sequence, then

i & < 2 (1 +
& Ta)®| S TT—Bl \af
The set of all Hilbert Schmidt operators on H is denoted by B, (H).
Theorem 5. If B1 # Ba, then Cg (q) C(q) is a Hilbert-Schmidt operator:
Proof. Notice that

Cp, (9)Cp, (@) € B2 (H?) & Uy, Cp, (9) Up,Ug,Cp, (9) U, € B2 (H?).

Since Up,Cp, (q9)Ug, = C(q), then we can assume f3, = 1. Rewrite 3; as B. Since

Cp(q) = Cl%ﬁ_ (g), we have

1 1

S0 a
a; a

n

B s
[Co ()], = o ne i ,nj=12,..

: IL%H’ n>k
Since [C(g)],x = +q+~(~)~+q nek n,k=1,2,..., we get that

L __yn n—k ¢ > 7
[cﬁ(q)c(q)]nj:{ 6+q+,..+qn4 i Be)" " e Z;j =12,
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=k

B'q"q/ g B S
= { T+g+-+g" ] Yi—j Tt "= pj=1.2,..

0, n<j
From here,
2
ICs (@) € ()15 = Z‘ [Cs (q)C

n,j
o n )

=2 ) |[G@)C)],
n=1 j=1

2n ,2n =k 2

From Lemma 3,
—k

n

,;J.H—-'-—l—qk‘l

)

_ 2 < 1 N L 1

‘1—3‘ I4g+-+g=t |1+ 4g™t T4+g+--4g!
2

< = N

‘1—B‘(1+q+~~+q1_1)

We use this in the last equation,

) oo BZn 2n y K 2
C C -
oo BZnQZn n *Zj
- =2 n=1) Z k—1
‘I—B‘ it (1+q+-+q Sltg++g1
0 BZn 2n
< oo,
‘1_ ; (I+q+--+g1)?
Thus Cg (¢) C(g) is a Hilbert-Schmidt operator. O

Theorem 6. If B1 # Bo, then (Cp, (q))" Cp, (q) and Cy, (q) (Cp, (q))" are Hilbert-
Schmidt operators.
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Proof. Without loss of generality, let us take B; = B. Firstly, we will show that
(Cpi ()" Cp, (q) € B2 (H?).

[(Cs(@)’] {O’ "
Cﬁ q l’l.: E"qunfj ) n,j:1,2,...
/ [ET—T n<j
Therefore,
B'q"q - Bk .
Cs (g *Cq = ,nj=12,..
Since

i quk
=l +g+- 4 g-!

2 qn—l qj—l qn—l
< ¥ - )
|1—ql3|<1+q+---+q"1 ’1+q+~-+q/1 1+q+-~-+q”*1
j—1
< 2 —
[1=gBl(1+g+---+4/7")
we have
2
oo oo quk
[(C ()" Ca)],,; -
jZ_l ,;1+q+---+q’< !
oo 4 g¥2
T = aBl (14 g+ 41
1Bl w1 (1 g+ ¢k 1)
Thus (Cp, (@) Cp, (g) is a Hilbert-Shcmidt operator.
Now, let us show that Cg (¢) (C(q))" € B, (H?).
min{n, j} Bk gk k—j
q q
C C(@)']. .=
Bnqn—j min{z, j} Bk
I T =T e e o
and so,
k

n n—j min{r, j} B n—j mln{nj}
B"q B < q ) ‘
I+g+-+g ! & I+g++¢ 7 14+g+-+q!
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‘ | Bmin{mj}‘ 2

(1+Q+”'+qn_1)‘1_6"

<

1—|—q+ g 1‘5‘ ‘1_3‘ -
Therefore we obtain that

oo Bnqn—j min{n,j} Bk 2

1Cs () (C(@)"[|ls= X [T P S pr——

n,j=1
- 4 o0 q2nq72j
- ‘1_5‘2,,7].:1 (1+..+¢q" 1)

Thus Cp () (C(q))" € B, (H?) is a Hilbert-Shemidt operator. O
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