

# SOME ALGEBRAIC PROPERTIES OF GENERALIZED q-CESÀRO MATRIX $C_g(q)$

### HASRET YAZARLI

Received 28 January, 2022

Abstract. In this paper, we define the generalized q-Cesàro matrix by using generalized Cesàro matrix and q-Cesàro matrix. We investigate normality, self-adjointedness and Hilbert-Schmidt properties of generalized q-Cesàro matrices.

2010 Mathematics Subject Classification: 47A05; 47A16; 47B15; 32A35

Keywords: Cesàro matrix, q-Cesàro matrix, generalized q-Cesàro matrix

### 1. Introduction

In [1], Bustoz and Gordillo defined the q-Cesàro matrix. For 0 < q < 1, q-Cesàro matrix  $C_1(q)$  is defined by

$$c_{nk} = \begin{cases} \frac{q^{n-k}}{1+q+\dots+q^n} & , & 0 < n \le k \\ 0 & , & n < k \end{cases}.$$

Since  $c_{nk}(q) \to \frac{1}{n+1}$ , for  $q \to 1$ , the q-analog of  $C_1 = (c_{nk})$  is matrix  $C_1(q)$  where

$$c_{nk} = \begin{cases} \frac{1}{n+1} &, & 0 < k \le n \\ 0 &, & n < k \end{cases}$$

and q-analog of the integer n is

$$[n]_q = \frac{1 - q^n}{1 - q}, \quad (q \neq 1).$$

In [3] Durna and Türkay obtained the spectrum of q-Cesàro matrix  $C_1(q)$  on the space of convergent sequences c. Also, they calculated spectral decomposition in the sense of Goldberg. In [6] El Shabrawy investigated boundedness, compactness and spectra of q-Cesàro matrix  $C_1(q)$ .

Let us denote the space  $H(\mathbb{D}) = \{ f : \mathbb{D} \to \mathbb{C} : f \text{ is an analytic function} \}$ , on  $\mathbb{D}$  the standard Hardy space  $H^p$   $(1 \le p < \infty)$  where  $\mathbb D$  is a unit disk, and p-summable

© 2023 Miskolc University Press

complex-valued sequences on the set of non-negative integers  $\ell^p$ . You can see [7] for details.

Previously, some authors have generalized various matrix transformations. For example, Young generalized the Cesàro matrix in his PhD thesis ([10]). For all  $f \in H^2$  the generalized Cesàro operator with the symbol g is defined as

$$C_g(f)(z) = \frac{1}{z} \int_0^z f(t) g(t) dt.$$

Here, g is analytic in  $\mathbb{D}$  and has Taylor series representation  $g(z) = \sum_{j=0}^{\infty} a_j z^j$ , where  $\{z^{n-1}\}_{n=1}^{\infty}$  is the standard basis of  $H^2$ . The matrix form of  $C_g$  in the standard basis is

$$C_g = \left( egin{array}{ccccc} a_0 & 0 & 0 & 0 & \cdots \ rac{a_1}{2} & rac{a_0}{2} & 0 & 0 & \cdots \ rac{a_2}{3} & rac{a_1}{3} & rac{a_0}{3} & 0 & \cdots \ rac{a_3}{4} & rac{a_2}{4} & rac{a_1}{4} & rac{a_0}{4} & \cdots \ dots & dots & dots & dots & dots & dots & dots \end{array} 
ight).$$

And so, one can express entries of matrix  $C_g$  as follows:

$$(c_g)_{nj} = \left\{ \begin{array}{cc} \frac{a_{n-j}}{n} & , & n \ge j \\ 0 & , & n < j \end{array} \right. .$$

For all 0 < q < 1 we can define the generalized q—Cesàro matrix  $C_g(q)$  by

$$C_g(q) = \left( egin{array}{cccc} a_0 & 0 & 0 & 0 & \cdots \ rac{q}{1+q}a_1 & rac{1}{1+q}a_0 & 0 & 0 & \cdots \ rac{q^2}{1+q+q^2}a_2 & rac{q}{1+q+q^2}a_1 & rac{1}{1+q+q^2}a_0 & 0 & \cdots \ dots & dots \end{array} 
ight)$$

and we have

$$(c_q(q))_{nk} = \begin{cases} \frac{q^{n-k}}{1+q+\dots+q^{n-1}} a_{n-k} &, & 0 \le k \le n \\ 0 &, & n < k \end{cases} .$$
 (1.1)

Since  $\lim_{q\to 1^-} (c_g(q))_{nk} = \frac{a_{n-k}}{n}$ , matrix  $C_g(q)$  is a q-analog of generalized Cesàro matrix  $C_g$ . If we take  $g(z) = \frac{1}{1-z}$  and limit for  $q\to 1$ , then we obtain  $C_g(q) = C(q)$ . Thus generalized q-Cesàro matrix contains both of generalized Cesàro matrix and ordinary Cesàro matrix.

The conjugate transpose of the matrix  $C_g(q)$  is

$$C_g^*(q) = \left( egin{array}{cccc} \overline{a_0} & rac{q}{1+q} \overline{a_1} & rac{q^2}{1+q+q^2} \overline{a_2} & \cdots \\ 0 & rac{1}{1+q} \overline{a_0} & rac{q}{1+q+q^2} \overline{a_1} & \cdots \\ 0 & 0 & rac{1}{1+q+q^2} \overline{a_0} & \cdots \\ dots & dots & dots & \ddots \end{array} 
ight)$$

and so,

$$(c_g^*(q))_{nk} = \begin{cases} \frac{q^{n-k}}{1+q+\dots+q^{n-1}} \overline{a_{n-k}} &, 0 \le n \le k \\ 0 &, k < n \end{cases} .$$
 (1.2)

Inspired by the relationship between Rhaly and Cesàro matrices, Durna and Yıldırım in [4] defined the generalized Rhaly matrix using the generalized Cesàro matrix. They also investigated the topological properties of the generalized Rhaly matrix. In [5], Durna and Yıldırım show that if an infinite matrix B is commutative with every generalized terraced matrix, then B = kI, where I is a unit matrix and  $k \in \mathbb{C}$ . Also, they investigated normality and self-adjointedness of generalized terraced matrix. Now, let us examine normality and self-adjointedness of generalized q-Cesàro matrix  $C_g(q)$ .

# 2. RESULTS

**Theorem 1.**  $C_{g}\left(q\right)$  is a normal matrix iff for  $c\in\mathbb{C}$ ,  $g\left(z\right)=c$ .

*Proof.* We consider (1,1) - entries of  $C_g(q)C_g^*(q)$  and  $C_g^*(q)C_g(q)$ :

$$\begin{aligned} \left[ C_g(q) C_g^*(q) \right]_{11} &= \sum_{k=1}^{\infty} \left( c_g(q) \right)_{1k} \left( c_g^*(q) \right)_{k1} \\ &= \left( c_g(q) \right)_{11} \left( c_g^*(q) \right)_{11} \\ &= a_0 \overline{a_0} = |a_0|^2 \end{aligned}$$

and

$$\begin{split} \left[ C_g^*(q) \, C_g(q) \right]_{11} &= \sum_{k=1}^{\infty} \left( c_g^*(q) \right)_{k1} \left( c_g(q) \right)_{1k} \\ &= a_0 \overline{a_0} + \sum_{k=2}^{\infty} \frac{q^{k-1}}{1 + q + \dots + q^{k-1}} \overline{a_{k-1}} \frac{q^{k-1}}{1 + q + \dots + q^{k-1}} a_{k-1} \\ &= |a_0|^2 + \sum_{k=2}^{\infty} \left( \frac{q^{k-1}}{1 + q + \dots + q^{k-1}} \right)^2 |a_{k-1}|^2. \end{split}$$

Since  $C_g(q)$  is a normal matrix, we get  $\sum_{k=2}^{\infty} \left(\frac{q^{k-1}}{1+q+\cdots q^{k-1}}\right)^2 |a_{k-1}|^2 = 0$ . From here, we obtain that for all i > 1,  $a_i = 0$ . And so,  $g(z) = a_0$ ,  $a_0 \in \mathbb{C}$ .

Conversely, if  $g(z) = a_0, a_0 \in \mathbb{C}$  then we have

$$C_g(q) = \left( egin{array}{cccc} a_0 & 0 & 0 & 0 & \cdots \ 0 & \dfrac{1}{1+q}a_0 & 0 & 0 & \cdots \ 0 & 0 & \dfrac{1}{1+q+q^2}a_0 & 0 & \cdots \ dots & dots & dots & dots & dots & dots \end{array} 
ight),$$

hence  $C_g(q)$  is normal.

**Corollary 1.**  $C_1$  is not normal.

**Corollary 2.**  $C_1(q)$  is not normal.

**Theorem 2.**  $C_{g}\left(q\right)$  is a self-adjoint matrix iff for  $c\in\mathbb{R}$ ,  $g\left(z\right)=c$ .

*Proof.* From (1.1) and (1.2),  $a_0 = \overline{a_0}$  and

$$\frac{q}{1+q}a_1 = \frac{q^2}{1+q+q^2}a_2 = \frac{q^3}{1+q+q^2+q^3}a_3\dots = 0.$$

Since, for all  $n \in \mathbb{N}$ ,  $\frac{q^n}{1+q+\cdots+q^n} \neq 0$ , then

$$a_0 = \overline{a_0}$$
,  $a_1 = a_2 = a_3 = \cdots = 0$ .

Hence  $a_0 \in \mathbb{R}$  and  $g(z) = a_0 \in \mathbb{R}$ .

The other direction is obvious.

**Corollary 3.**  $C_1$  is not self-adjoint.

**Corollary 4.**  $C_1(q)$  is not self-adjoint.

Note that if  $n \ge 0$  and if  $T_{ij} = 0$  for j < i + n, we say that T is an n-triangular operator matrix ([9]).

**Lemma 1** ([9, Theorem 2]). Let  $T = (T_{ij}) \in L \begin{pmatrix} \overset{\circ}{\oplus} \mathcal{H} \\ \overset{\circ}{n=0} \mathcal{H} \end{pmatrix}$  be a 1-triangular operator matrix. Suppose that  $T_{i,i+1}$  has dense range for all i. Then T is cyclic.

**Lemma 2** ([2, Proposition 3.6]). Let T be a triangular operator whose diagonal entries with respect to some orthonormal basis for  $\mathcal{H}$  are distinct. Then T is cyclic.

**Theorem 3.**  $C_g^*(q)$  is cyclic for all  $g \in \mathcal{B}$ , where

$$\mathcal{B}=\left\{g:\mathbb{D}
ightarrow\mathbb{C}:\int\limits_{0}^{z}g\left(t
ight)dt\ \ is\ a\ bounded\ mean\ oscillation\ function
ight\}.$$

*Proof.* Suppose that g(0) = 0. From Lemma 1, we obtain the state of the theorem. Let  $g(0) \neq 0$ . Therefore the diagonal entries of matrix  $C_g^*(q)$  are distinct. And so, from Lemma 2,  $C_g^*(q)$  is cyclic.

**Theorem 4.** If  $g_{\beta}(z) = g(\beta z)$  with  $|\beta| = 1$ , then  $C_{g_{\beta}}(q)$  is unitarily equivalent to  $C_g(q)$ . We denote this by  $C_{g_{\beta}}(q) \cong C_g(q)$ .

*Proof.* Define the map  $U_{\beta}: H^2 \to H^2$  by  $U_{\beta}(f)(z) = f(\beta z)$ . It is easy to see that  $U_{\beta}$  is unitary with  $U_{\beta}^* = U_{\overline{\beta}}$ .

Now, to show the unitary equivalence, we must prove that  $U_{\beta}^{*}C_{g_{\beta}}(q)U_{\beta}=C_{g}(q)$ .

The matrix representation of  $U_{\beta}$  in the basis  $\left\{z^{n-1}\right\}_{n=1}^{\infty}$  is the diagonal matrix  $diag\left\{\beta^{n}\right\}$ . Moreover, we know that  $\left(U_{\beta}\right)^{*}=U_{\overline{\beta}}=\left(U_{\beta}\right)^{-1}$ . Using these matrix representations we have  $U_{\beta}^{*}C_{g_{\beta}}\left(q\right)U_{\beta}=C_{g}\left(q\right)$  and consequently  $C_{g_{\beta}}\left(q\right)\cong C_{g}\left(q\right)$  is obtained.

**Corollary 5.** *If*  $\beta \in \partial(\mathbb{D})$ , then the spectrum of  $C_{\frac{1}{1-\beta_z}}(q)$  is

$$\sigma\left(C_{\frac{1}{1-\beta z}}(q)\right) = \sigma\left(C\left(q\right)\right) = \left\{\lambda \in \mathbb{C} : \left|\lambda - \frac{1}{1+q}\right| \leq \frac{q}{1+q}\right\}.$$

*Proof.* This is immediate from the unitary equivalence and [6], Theorem 2.2.

In [8] Mursalenn et al. studied the spectrum and Hilbert Schmidt properties of generalized Rhaly matrices. Now, let us show that  $C_g(q)$  is a Hilbert-Schmidt operator. For this, we shall give the following lemma.

**Lemma 3** ([8]). If  $\alpha \in \mathbb{Z}$ ,  $B_{j-1} = 0$ ,  $B_k = \sum_{k=j}^n \beta^k$  for k = j, ..., n and  $(a_k)$  is a positive decreasing sequence, then

$$\left| \sum_{k=j}^{n} \frac{\beta^{k}}{(a_{k})^{\alpha}} \right| \leq \frac{2}{|1-\beta|} \left( \frac{1}{a_{n}^{\alpha}} + \left| \frac{1}{a_{j}^{\alpha}} - \frac{1}{a_{n}^{\alpha}} \right| \right).$$

The set of all Hilbert Schmidt operators on H is denoted by  $B_2(H)$ .

**Theorem 5.** *If*  $\beta_1 \neq \beta_2$ , then  $C_{\beta}(q)C(q)$  is a Hilbert-Schmidt operator.

Proof. Notice that

$$C_{\beta_1}(q)C_{\beta_2}(q) \in B_2(H^2) \Leftrightarrow U_{\overline{\beta_2}}C_{\beta_1}(q)U_{\beta_2}U_{\overline{\beta_2}}C_{\beta_2}(q)U_{\beta_2} \in B_2(H^2)$$
.

Since  $U_{\overline{\beta_2}}C_{\beta_2}(q)U_{\beta_2}=C(q)$ , then we can assume  $\beta_2=1$ . Rewrite  $\beta_1$  as  $\beta$ . Since  $C_{\beta}(q)=C_{\frac{1}{1-\beta_2}}(q)$ , we have

$$\left[ C_{\beta} \left( q \right) \right]_{nj} = \left\{ \begin{array}{ll} \frac{\left( \beta q \right)^{n-j}}{1+q+\cdots+q^{n-1}}, & n \geq j \\ 0, & n < j \end{array} \right., \, n, j = 1, 2, \dots$$

Since 
$$[C(q)]_{nk} = \begin{cases} \frac{q^{n-k}}{1+q+\cdots+q^{n-1}}, & n \geq k \\ 0, & n < k \end{cases}$$
,  $n,k=1,2,\ldots$ , we get that

$$\left[ C_{\beta}(q) C(q) \right]_{nj} = \left\{ \begin{array}{ll} \frac{1}{1+q+\cdots+q^{n-1}} \sum_{k=j}^{n} (\beta q)^{n-k} \frac{q^{k-j}}{1+\cdots+q^{k-1}}, & n \geq j \\ 0, & n < j \end{array} \right., \, n, j = 1, 2, \dots$$

$$= \left\{ \begin{array}{ll} \frac{\beta^n q^n q^{-j}}{1+q+\cdots+q^{n-1}} \sum_{k=j}^n \frac{\overline{\beta}^k}{1+\cdots+q^{k-1}}, & n \geq j \\ 0, & n < j \end{array} \right., \; n,j = 1,2,\ldots$$

From here,

$$\begin{aligned} \left\| C_{\beta}(q) C(q) \right\|_{H.S}^{2} &= \sum_{n,j} \left| \left[ C_{\beta}(q) C(q) \right]_{nj} \right|^{2} \\ &= \sum_{n=1}^{\infty} \sum_{j=1}^{n} \left| \left[ C_{\beta}(q) C(q) \right]_{nj} \right|^{2} \\ &= \sum_{n=1}^{\infty} \frac{\beta^{2n} q^{2n}}{(1+q+\dots+q^{n-1})^{2}} \sum_{j=1}^{n} q^{-2j} \left| \frac{\overline{\beta}^{k}}{1+q+\dots+q^{k-1}} \right|^{2}. \end{aligned}$$

From Lemma 3,

$$\begin{split} & \left| \sum_{k=j}^{n} \frac{\overline{\beta}^{k}}{1 + \dots + q^{k-1}} \right| \\ & \leq \frac{2}{\left| 1 - \overline{\beta} \right|} \left( \frac{1}{1 + q + \dots + q^{n-1}} + \left| \frac{1}{1 + \dots + q^{j-1}} - \frac{1}{1 + q + \dots + q^{n-1}} \right| \right) \\ & \leq \frac{2}{\left| 1 - \overline{\beta} \right| (1 + q + \dots + q^{j-1})}. \end{split}$$

We use this in the last equation,

$$\begin{aligned} \left\| C_{\beta}(q) C(q) \right\|_{H.S}^{2} &= \sum_{n=1}^{\infty} \frac{\beta^{2n} q^{2n}}{(1+q+\dots+q^{n-1})^{2}} \sum_{j=1}^{n} q^{-2j} \left| \frac{\overline{\beta}^{k}}{1+q+\dots+q^{k-1}} \right|^{2} \\ &\leq \frac{4}{\left| 1-\overline{\beta} \right|^{2}} \sum_{n=1}^{\infty} \frac{\beta^{2n} q^{2n}}{(1+q+\dots+q^{n-1})^{2}} \sum_{j=1}^{n} \frac{q^{-2j}}{\left| 1+q+\dots+q^{k-1} \right|^{2}} \\ &\leq \frac{4}{\left| 1-\overline{\beta} \right|^{2}} \sum_{n=1}^{\infty} \frac{\beta^{2n} q^{2n}}{(1+q+\dots+q^{n-1})^{2}} < \infty. \end{aligned}$$

Thus  $C_{\beta}(q)C(q)$  is a Hilbert-Schmidt operator.

**Theorem 6.** If  $\beta_1 \neq \beta_2$ , then  $\left(C_{\beta_1}\left(q\right)\right)^* C_{\beta_2}\left(q\right)$  and  $C_{\beta_1}\left(q\right)\left(C_{\beta_2}\left(q\right)\right)^*$  are Hilbert-Schmidt operators.

*Proof.* Without loss of generality, let us take  $\beta_1 = \beta$ . Firstly, we will show that  $(C_{\beta_1}(q))^* C_{\beta_2}(q) \in B_2(H^2)$ .

$$\left[\left(C_{\beta}\left(q\right)\right)^{*}\right]_{nj}=\left\{\begin{array}{ll}0, & n>j\\ \frac{\overline{\beta}^{n-j}q^{n-j}}{1+q+\cdots+q^{n-1}}, & n\leq j\end{array}, n,j=1,2,\ldots\right.$$

Therefore,

$$\left[\left(C_{\beta}\left(q\right)\right)^{*}C\left(q\right)\right]_{nj} = \frac{\overline{\beta}^{n}q^{n}q^{-j}}{1+q+\cdots+q^{n-1}}\sum_{k=\max\{n,j\}}^{\infty} \frac{\beta^{k}q^{k}}{1+q+\cdots+q^{k-1}}, \ n,j=1,2,...$$

Since

$$\begin{split} &\sum_{k=n}^{m} \frac{\beta^{k} q^{k}}{1+q+\dots+q^{k-1}} \\ &\leq \frac{2}{|1-q\beta|} \left( \frac{q^{n-1}}{1+q+\dots+q^{n-1}} + \left| \frac{q^{j-1}}{1+q+\dots+q^{j-1}} - \frac{q^{n-1}}{1+q+\dots+q^{n-1}} \right| \right) \\ &\leq \frac{2q^{j-1}}{|1-q\beta| \left( 1+q+\dots+q^{j-1} \right)}, \end{split}$$

we have

$$\begin{split} \left[ \left( C_{\beta}(q) \right)^{*} C(q) \right]_{nj} &= \sum_{n,j=1}^{\infty} \left| \sum_{k=j}^{\infty} \frac{\beta^{k} q^{k}}{1 + q + \dots + q^{k-1}} \right|^{2} \\ &\leq \sum_{n,j=1}^{\infty} \frac{4}{|1 - q\beta|^{2}} \frac{q^{2j-2}}{(1 + q + \dots + q^{k-1})^{2}} \\ &= \frac{4}{|1 - q\beta|^{2}} \sum_{n,j=1}^{\infty} \frac{q^{2j-2}}{(1 + q + \dots + q^{k-1})^{2}} < \infty. \end{split}$$

Thus  $(C_{\beta_1}(q))^*C_{\beta_2}(q)$  is a Hilbert-Shemidt operator. Now, let us show that  $C_{\beta}(q)(C(q))^* \in B_2(H^2)$ .

$$\begin{split} \left[ C_{\beta}(q) \left( C(q) \right)^{*} \right]_{nj} &= \sum_{k=1}^{\min\{n,j\}} \frac{\beta^{n-k} q^{n-k}}{1+q+\dots+q^{n-1}} \frac{q^{k-j}}{1+q+\dots+q^{k-1}} \\ &= \frac{\beta^{n} q^{n-j}}{1+q+\dots+q^{n-1}} \sum_{k=1}^{\min\{n,j\}} \frac{\overline{\beta}^{k}}{1+q+\dots+q^{k-1}} \end{split}$$

and so,

$$\left| \frac{\beta^{n} q^{n-j}}{1+q+\dots+q^{n-1}} \sum_{k=1}^{\min\{n,j\}} \frac{\overline{\beta}^{k}}{1+q+\dots+q^{k-1}} \right| \leq \frac{q^{n-j}}{1+q+\dots+q^{n-1}} \sum_{k=1}^{\min\{n,j\}} \left| \overline{\beta}^{k} \right|$$

$$=\frac{q^{n-j}}{1+q+\cdots+q^{n-1}}\left|\overline{\beta}\right|\frac{\left|1-\overline{\beta}^{\min\{n,j\}}\right|}{\left|1-\overline{\beta}\right|}\leq \frac{2q^{n-j}}{\left(1+q+\cdots+q^{n-1}\right)\left|1-\overline{\beta}\right|}.$$

Therefore we obtain that

$$\begin{aligned} \left\| C_{\beta}(q) \left( C(q) \right)^{*} \right\|_{H.S} &= \sum_{n,j=1}^{\infty} \left| \frac{\beta^{n} q^{n-j}}{1 + \dots + q^{n-1}} \sum_{k=1}^{\min\{n,j\}} \frac{\overline{\beta}^{k}}{1 + \dots + q^{k-1}} \right|^{2} \\ &\leq \frac{4}{\left| 1 - \overline{\beta} \right|^{2}} \sum_{n,j=1}^{\infty} \frac{q^{2n} q^{-2j}}{\left( 1 + \dots + q^{n-1} \right)^{2}} < \infty. \end{aligned}$$

Thus  $C_{\beta}(q)(C(q))^* \in B_2(H^2)$  is a Hilbert-Shemidt operator.

#### REFERENCES

- [1] J. Bustoz and L. F. Gordillo, "q-Hausdorff summability." J. Comput. Anal. Appl., vol. 7, no. 1, pp. 35–48, 2005.
- [2] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, and D. R. Wood, "On the metric dimension of Cartesian products of graphs." *SIAM J. Discrete Math.*, vol. 21, no. 2, pp. 423–441, 2007, doi: 10.1137/050641867.
- [3] N. Durna and M. E. Turkay, "The spectrum of q-Cesàro matrices on c and its various spectral decomposition for 0 < q < 1." Operators and Matrices, vol. 15, no. 3, pp. 795–813, 2021, doi: 10.7153/oam-2021-15-55.
- [4] N. Durna and M. Yildirim, "Topological results about the set of generalized Rhaly matrices." *Gen. Math. Notes*, vol. 17, no. 1, pp. 1–7, 2013.
- [5] N. Durna and M. Yildirim, "Generalized terraced matrices." *Miskolc Math. Notes*, vol. 17, no. 1, pp. 201–208, 2016, doi: 10.18514/MMN.2016.1272.
- [6] S. R. El-Shabrawy, "On *q*-Cesàro operators: Boundedness, compactness and spectra." *Numer. Func. Anal. Optim.*, vol. 42, no. 9, pp. 1019–1037, 2021, doi: 10.1080/01630563.2021.1933027.
- [7] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*. Cambridge, University Press, 1952.
- [8] M. Mursaleen, M. Yildirim, and N. Durna, "On the spectrum and Hilbert Schmidt properties of generalized Rhaly matrices." *Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat.*, vol. 68, no. 1, pp. 712–723, 2019, doi: 10.31801/cfsuasmas.464177.
- [9] W. R. Wogen, "On some operators with cyclic vectors." *Indiana Univ. Math. J.*, vol. 27, no. 1, pp. 163–171, 1978, doi: 10.1512/iumj.1978.27.27014.
- [10] S. W. Young, Algebraic and spectral properties of generalized Cesàro operators. PhD Thesis, The University of North Carolina at Chapel Hill: ProQuest LLC, Ann Arbor, MI, 2002.

Author's address

# Hasret Yazarli

Sivas Cumhuriyet University, Department of Mathematics, Faculty of Sciences, 58140 Sivas, Turkey *E-mail address*: hyazarli@cumhuriyet.edu.tr