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Abstract
We have examined the sensitivity of the axion-like particles (ALP) couplings
to electroweak gauge bosons in the diphoton production at a future muon
collider. The collisions at the μ+μ− energies of 3 TeV, 14 TeV, and 100 TeV
are addressed. The differential cross sections versus the invariant mass of the
final photons and total cross section versus minimal diphoton invariant mass
are presented. We have derived the exclusion regions for the ALP-gauge
boson coupling. The obtained bounds are much stronger than the current
experimental bounds in the ALP mass region 10 GeV to 10 TeV. The partial-
wave unitarity constraints on the ALP-gauge boson coupling are estimated.
We have shown that the unitarity is not violated in the region of the ALP
coupling studied in the present paper.
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1. Introduction

The strong CP problem of the Standard Model (SM) can be solved by introducing a spon-
taneously broken Peccei–Quinn symmetry [1, 2]. As a result, a light pseudo-Nambu–Gold-
stone boson, QCD axion, arises [3, 4]. The QCD axion is a well-motivated candidate for the
DM [5–9] which can be produced via the vacuum misalignment mechanism [5, 10] or as the
decay of topological defects [11].

The axion-like particles (ALPs) are particles having interactions similar to the axion. The
origin of the ALP is expected to be similar but without the relationship between its coupling
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constant and mass. It means that the ALP mass can be treated independently of its couplings
to the SM fields. Since the ALPs are not directly relevant for the QCD axion, heavy ALPs can
be detected at colliders. The production of the ALPs was studied in the pp [12–19] and heavy-
ion [13, 18, 20–22] collisions at the LHC, as well as at future colliders [23–31], including
electron-ion scattering [32, 33]. For a review on the axions and ALPs, see [9, 34–39] and
references therein.

Many ALP searches assume their strong couplings to the electromagnetic term mn
mn˜F F .

One of the most preferred processes to probe the ALP-photon coupling is a light-by-light
(LBL) scattering. The first evidence of the subprocess γγ→ γγ was observed by the ATLAS
and CMS collaborations in high-energy ultra-peripheral PbPb collisions [40–42]. The phe-
nomenology of the LBL scattering at the LHC was examined in [43–47]. In a number of
papers [24, 25, 48, 49] a phenomenology of the LBL collisions at future e+e− colliders were
presented. The search for ALPs in the γγ→ a→ γγ collision with proton tagging at the LHC
was given in [12].

It is a muon collider that could provide the simplest, but the most striking signature of the
existence of the ALPs [50–53]. Muon colliders were proposed by Tikhonin and Budker in the
late 1960ʼs [54, 55]. Then they were actively discussed in the early 1980s [56, 57]. Muon
colliders have a great potential for high-energy physics since they can offer collisions of
elementary particles at very high energies. The point is that muons can be accelerated in a ring
without limitation from synchrotron radiation compared to linear or circular electron-positron
colliders [58–60]. Note, however, that getting high luminosity needs to solve a technical
problem related to the short muon lifetime at rest and the difficulty of producing large
numbers of muons in bunches with small emittance [61–64].

Note that muon collider has a low level of beamstrahlung and synchrotron radiation
compared to linear or circular electron-positron colliders. As a result, it enables reduced
energy spread in the collision and an improved energy resolution. That is why, the muon
collider is the ideal machine to collide elementary particles at high energies and luminos-
ities [65, 66].

The muon collider could provide a determination of the electroweak couplings of the
Higgs boson which is significantly better than what is considered attainable at other future
colliders [67–73]. Interest in designing and building a muon collider is also based on its
capability of probing the physics beyond the SM. In a number of recent papers searches for
SUSY particles [74], WIMPs [75], vector boson fusion [76], leptoquarks [77], lepton flavor
violation [78], and physics of (g− 2)μ [79] at the muon colliders are presented.

In the present paper, we study the high-energy production of the ALP in the
μ+μ−→ μ+γγμ− process which goes via vector boson fusion subprocess V1V2→ a→ γγ,
where V1,2 is γ or Z, and a is a heavy ALP. The main goal is to obtain constraints on the ALP-
vector boson coupling as a function of the ALP mass at TeV and multi-TeV muon colliders.

2. ALP in gauge boson scattering

The interaction of the ALP a with SM gauge bosons is described by the Lagrangian

= ¶ ¶ - +
L

+ ¢
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m
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mn
mn
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where Bμν and mnW c are the field strength of U(1)Y and SU(2)L, respectively, while mnB̃ and mnW̃ c

are dual field strength tensors. As was already mentioned above, the ALP mass ma and
coupling fa can be regarded as independent parameters. After electroweak symmetry

J. Phys. G: Nucl. Part. Phys. 50 (2023) 105002 S C İnan and A V Kisselev

2



breaking, the ALP couples to the photon and Z boson as
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where sw and cw are sine and cosine of the Weinberg angle, respectively.
In what follows, we assume that the ALP couples to hypercharge U(1)Y, not to SU(2)L, that

corresponds to CWW= 0. Let us define e2CBB/Λ= 1/fa, then a set of the ALP couplings takes
the form
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We also assume that the ALP has a non-zero total width

gg
gg

G =
G 


( )
( )

( )a

aBr
, 5a

where

gg
p

G  =( ) ( )a
m

f4
6a

a

3

2

is the ALP decay width into two photons. In general, the ALP can also couple to fermions as
yg g y¶m

m
¯a 5 . But for ma?mψ the full width of the ALP decay should be mainly defined by

its decay to two photons. In our upcoming calculations the ALP branching Br(a→ γγ) is
considered as a free parameter that is equal to (or less than) 1.

The differential cross section of the subprocess V1V2→ γγ, where V1,2= γ, Z, is a sum of
helicity amplitudes squared

å
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,
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where ŝ is a collision energy of this subprocess, and λ3, λ4 are helicities of the outgoing
photons. In its turn, each of the helicity amplitudes in (7) is a sum of the ALP and SM
(electroweak) terms

= + ( )M M M . 8a ew

The Feynman diagrams describing Ma are shown in figure 1. The explicit expressions of
the ALP helicity amplitudes of the γγ→ γγ process can be found in [12] (see also [24]). The
results of our calculations of the ALP helicity amplitudes Ma of the processes Zγ→ γγ and
ZZ→ γγ are presented in appendix. Each of the SM amplitudes is a sum of the fermion andW
boson one-loop amplitudes
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= + ( )M M M . 9f W
ew ew ew

The SM helicity amplitudes M f
ew and MW

ew have been calculated for the processes γγ→ γγ

[80–82] (see also [83]), γγ→ γZ [84], and γγ→ ZZ [85].

2.1. Differential cross section of diphoton production

We consider the process shown in figure 2. In the equivalent photon approximation (EPA)
[86–91], we have the following leading logarithmic approximation distributions for the
photon with the helicities +1 and −1 in unpolarized fermion beam ( f= μ−, in our case) [90]

a
p

= =
+ -

g g
m


( ) ( ) ( ) ( )f x Q f x Q

x

x

Q

m
, ,

4

1 1
ln , 10f f

2 2
2 2

2

where x= Eγ/Eμ is the ratio of the photon energy Eγ and energy of the incoming muon Eμ,
mμ is the muon mass. Note that due to C and P invariances, =g g¯f ff f , where f̄ denotes anti-
fermion (μ+, in our case).

To examine the collisions of massive vector bosons (W± and Z), the effective W
approximation (EWA) is applied [92, 93] which allows to treat massive vector bosons as

Figure 1. The Feynman diagrams describing virtual production of the axion-like
particle a in the collision of two vector bosons V1, V2 = γ or Z, with two outgoing
photons.

Figure 2. The Feynman diagrams describing virtual production of the axion-like
particle a in the μ+μ− collision via vector boson fusion.
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partons inside the colliding beams (see also [94–102]). In this scheme, the Z boson has
different distributions for its transverse (±1) and longitudinal (0) polarizations. The leading
order distributions of the Z boson in unpolarized fermion beam are the following [76, 99, 102]
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The PDFs of anti-fermions are related to those of fermions by CP relation, =
 ¯ 

f fZ f Z f . Note
that both EPA and EWA are an inclusive description. No cuts are imposed on the outgoing
muons.

The cross section of our process μ−μ+→ μ−V1V2μ
+→ μ−γγμ+ is defined by the formula
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where V1,2 runs γ+, γ−, Z+, Z−, Z0
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and p⊥ is the transverse momenta of the outgoing photons. The boson distributions inside the
muon beam, g m

 ( )f x Q, 2 , m
 ( )f x Q,Z

2 , and m ( )f x Q,Z
2

0
are given by equations (10) and

(11), respectively, and the subprocess cross section s ggˆ ( )d V V1 2 is defined by equation (7).
We take = ˆQ s2 , where t= mŝ E2 is the invariant energy of the VBF subprocess
V1V2→ γγ.

2.2. Numerical analysis

Since the ALP mass and couplings can be treated independently, it is not surprising that
heavy ALPs, with masses up to a few TeV, were searched for at the LHC (see, for instance,
figure 4 in [23]). In the present section, we will examine the production of heavy ALPs in the
10 GeV to 10 TeV mass region.

The results of our calculations of the differential cross section for the μ+μ−→ μ+γγμ−

collision at the future muon collider are presented in figure 3 as a function of the invariant
mass of the detected photons mγγ. The collision energies s of 3 TeV, 14 TeV and 100 TeV,
and two values of the ALP branching Br(a→ γγ) are addressed. The ALP mass is taken to be
equal to ma= 1 TeV. The ALP-boson couplings fa are chosen to be equal to 5 TeV, 10 TeV,
and 50 TeV for the left, middle, and right panels, respectively. The sharp peaks for =s 3
TeV and =s 14 TeV are the resonance peaks located at mγγ= 1 TeV. They are more
pronounced for larger Br(a→ γγ).
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The dominant background is the SM process μ+μ−→ γγ, the continuous background is
μ+μ−→ μ+γγμ− [53]. As was already mentioned in Introduction, the muon collider has a
reduced initial-state-radiation (ISR), contrary to e+e− collider. We expect that the tail of the
beam energy spread is not large. To suppress a sizable contribution of the large cross section
of μ+μ−→ γγ to a background rate, we impose a strong upper cut on the diphoton invariant
mass, < =gg ggm m s0.9,max . The ISR effects of the future muon colliders have been
studied, for instance, in [103]. As one can see in figure 1 in [103], the beam energy dis-
tribution decreases exponentially as a function of the energy fraction = ˆx s s from the ISR

effects ( = ggŝ m 2 in our case). For x< 0.9 we get the large suppression factor
- -( ( ) )x Rexp 1 , where R is the beam energy resolution (R= 0.01(0.003)% for future muon

colliders).3 Thus, our cut is sufficient to suppress the main background. The resulting SM
background is shown in figure 3. One can see that a discrepancy between the cross section
and its SM part becomes significant as mγγ grows.

In figure 4 we present the total cross section s < <gg gg gg( )m m m,min ,max , where ggm ,min is
the minimal invariant mass of the final photons mγγ, and ggm ,max is defined above. As one can
see from figure 3, the main contribution to the total cross sections comes from the region

gg ggm m ,max because of the resonance-like behavior of the differential cross section.
Moreover, our calculations show that the differential cross section gets very small as mγγ

approaches s . In the region <ggm 1000 GeV,min , the new physics cross section do not
change for all s . For >ggm 1000,min GeV, the deviation of the cross-section from its SM
part is very large. Moreover, for =s 14 TeV and =s 100 TeV it gets larger and larger as

ggm ,min grows. In our calculations, we also apply the cuts on the rapidity and transverse
momentum of the outgoing photons, |η|< 2.5 and pt> 30 GeV, respectively.

Figure 3. The differential cross sections for the μ+μ− → μ+γγμ− scattering at the
future muon collider versus diphoton invariant mass mγγ. The curves correspond to the
ALP mass ma = 1 TeV. The ALP-gauge boson coupling fa is equal to 5 TeV, 10 TeV,
and 50 TeV for the center-of-mass energy 3 TeV, 14 TeV, and 100 TeV, respectively.

3 It is not the case for the resonance Higgs production when =ˆs s mh
2 [103].
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To derive the exclusion region, we apply the following formula for the statistical sig-
nificance SS [104]

= - +[( ( )] ( )SS S B S B2 ln 1 , 16

where S is the number of signal events and B is the number of background (SM) events. We
define the regions SS� 1.645 as the regions that can be excluded at the 95% C.L. To reduce
the SM background, we used the additional cut mγγ> 800 GeV. All our cuts improve
significantly signal-to-background ratio. The results are shown in figure 5. Following [62]
(see also [75]), we consider the integrated luminosities of 1 ab−1, 20 ab−1, and 1000 ab−1 for
the muon collider energies of 3 TeV, 14 TeV, and 100 TeV, respectively.

As one can see in figure 5, for =s 3 TeV the best sensitivity region is limited to a rather
sharp region 800 GeV—2 TeV. In this region, the ALP term dominates, while outside it the
contributions from the ALP and SM terms are comparable and they partially cancel each
other. For =s 14 TeV and =s 100 TeV the ALP contributions dominate in wider
regions of the ALP mass (�800 GeV). The best bounds for 14 and 100 TeV are those seen on
the figure, and for larger mass region the bounds become weaker. A similar effect was shown
to take place for the ALP production in the LBL scattering [24] (for details, see appendix in
[24]). The best limits corresponds to Br(a→ γγ)= 1. The unitary limits are also shown. For
comparison, in figure 6 we present previously obtained 95% C.L. exclusion region for the
ALP-photon coupling coming from the polarized LBL scattering at the 3 TeV CLIC [24].
Other current exclusion regions for this coupling are also shown [12]. As seen from figures 5
and 6, the excluded areas that we have found from studying diphoton production at the muon
collider extends to wider regions, especially for =s 14 TeV and =s 100 TeV.

In the present paper, we have assumed that the ALP to couple only to hypercharge U(1)Y.
The same assumption (CWW= 0) was used in [23], where the bound <-f 0.05a

1 TeV−1 was
derived for 100 TeV FCC-hh. As was pointed out in [105], for light ALPs there are strong

Figure 4. The total cross sections s < <gg gg gg( )m m m,min ,max for the
μ+μ− → μ+γγμ− scattering at the future muon collider versus minimal value of the
diphoton invariant mass mγγ. The values of the ALP mass ma and ALP-gauge boson
coupling fa are the same as in figure 3.
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constraints on CWW from loop-induced flavor-changing processes. To simplify the analysis in
a number of papers different assumptions were used. For instance, in [31] it was assumed that

=c C s Cw WW w BB
2 2 that means gaγZ= 0, gaγZ= gaZZ. It was obtained that the sensitivity bound

on gaγZ for the third stage for the CLIC in the ALP mass interval 5 GeV—2600 GeV is equal

Figure 5. 95% C.L. exclusion regions for the ALP-gauge boson coupling fa coming
from the μ+μ− → μ+γγμ− scattering at the future muon collider. The curves are
obtained with the use of the cut on diphoton invariant mass, mγγ > 800 GeV. The
unitary bounds are also shown.

Figure 6. Our previous 95% C.L. exclusion region for the ALP-photon coupling in the
polarized light-by-light scattering at the 3 TeV CLIC induced by ALPs (green area)
[24] in comparison with other current exclusion regions [12].
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to 0.091 TeV−1 at 5σ level [106]. It is compatible with our bound for the 3 TeV muon collider
in the region ma= 10–1000 GeV, see figure 5. For the interval ma= 1000–3000 GeV our
bound is significantly stronger. In general, CWW and CBB are independent parameters, so are
the couplings gaγZ and gaZZ. In particular, for the FCC-ee and LHC-allowed regions in the
parameter space gaγZ− gaZZ have been obtained in [23]. Note that the 95% CL upper limit on
gaγγ extracted from CMS Run 2 measurements is equal to 4.99 TeV−1, while for the HL-
LHC the projected limit is 2.43 TeV−1 [19].

3. Unitarity constraints on ALP coupling

Let us study bounds imposed by partial-wave unitarity. The partial-wave expansion of the
helicity amplitude in the center-of-mass system was derived in [106]. It looks like

åq j p d d

q

= + + +

´

l l l l l l l l

l m f
lm l l l l

-

( ) ( ) ( )( )

( ) ( ) ( )( )

M s J

e d T s

, , 16 2 1 1 1

, 17
J

i J J

1 2 3 4 1 2 3 4

1 2 3 4

where λ= λ1− λ2, μ= λ3− λ4, θ(f) is the polar (azimuth) scattering angle, and qlm ( )dJ is the
Wigner (small) d-function [107]. Relevant formulas for the d-functions can be found in [108].
If we choose the plane (x− z) as a scattering plane, then f= 0 in (17). Parity conservation
means that

= -l l l l
l l l l

l l l l
- - +

- - - -( ) ( ) ( ) ( )T s T s1 . 18J J
1 2 3 4

1 2 3 4
1 2 3 4
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we find from (17) that the partial-wave amplitude is defined as

òp d d
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Here and in what follows, q=z cos . The helicity amplitudes l l l lM 1 2 3 4
are given in appendix.

The d-functions obey, inter alia, the relation - = -lm
l

m l
-

-( ) ( ) ( )d z d z1J J J . In particular, we
have (J� 0)

=( ) ( ) ( )d z P z , 22J
J00

PJ(z) being the Legendre polynomial, and [108]
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where 2F1(a, b; c; x) is the hypergeometric function [109], and J� 2.
1. Consider the helicity amplitude gg

++++M (A3). Then λ1= λ2= λ3= λ4= 1, and
λ= μ= 0. Since Gs m m, a a a

2 , we can write
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Then we obtain from (19), (26) the unitarity bound on the the ALP-gauge boson coupling
coupling
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where QJ(x) is the Legendre function of the second kind [110]. If x> 1, QJ(x) is a real strictly
decreasing function of J, and it decreases exponentially as J→∞ . Note that

e e+ -( ) ( )Q 1 2 ln 2J for ε= 1, J� 0. The term with J= 0 is a leading one,
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3. Now consider the helicity amplitude gg
+--+M (A8). Then λ1= λ4= 1, λ2= λ3=−1,

and λ= 2, μ=−2. The helicity amplitude is given by equation (A8)

e
=

-
- +

gg
+--+( ) ( ) ( )M s z

f

s z

z
,

2 1

1 2
. 32

a
2

2

Then we get from (21), (23), (32)

ò

e

= - - +

= -

p e

p

+--+ -
-

- +
+( )( ) ( )

( ) ( ) ( )

( )T s F J J z

I J

1 2 , 3; 1; d

1 , , 33

J J s

f

z

z

z

J s

f

64 1

1 1
1 2 2 1

1
2

4

a

a

2

4

2

where the notation

òe
e

=
+

- + -( ) ( ) ( )I J
x

x
F J J x x, 2 , 3; 1; 1 d 34

0

1 4

2 1
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is introduced. Using formula 2.21.1.26 in [111], we obtain a sequence of two equalities (recall
that J� 2)

e
e e

e e

=
G

G - G +
- + -

= -
G - G +

G +
- + + -

-

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )
( ) ( )

( ) ( ) ( )
( )

( )

I J
J J

F J J

J J

J
F J J J

,
5

3 4
1; 1; 5; 3 ; 4;

1

1
1 3

2 2
1, 3; 2 2;

1
, 35J

J

3 2

1 2 1

where Γ(x) denotes the gamma function [109]. In (35) we have reduced a generalized
hypergeometric function 3F2(a, b, c; d, e; x) to a traditional hypergeometric function. With the
help of equation (2).10(6) in [109] we find the final analytic expression for I(J, ε),

e e

e

= - +
G - G +

G +

´ - - +
+

-

⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( )
( )

( )

I J
J J

J

F J J J

, 1 1
1 3

2 2

1, 1; 2 2;
1

1
. 36

J J1

2 1

Using integral representation for the hypergeometric function (see formula 2.12(1) in [109]),
one can show that for ε> 0 the right-hand side of equation (36) is a strictly decreasing
function of J. Moreover, it falls off exponentially at large J. Thus, the most stringent unitarity
bound comes from the partial-wave amplitude with J= 2 that looks like

p e e

p
e

e e e
e

e

=
+ +

= - + - +
+

+--+ ⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

( )

( )

T s
s

f
F

s

f

20

1

1
1, 1; 6;

1

1

16
1

4

3
2 4 4 ln

1
. 37

a

a

2
2 2 1

2
2 3 4

As a result, we come to the unitarity bound

p
e

e e e
e

e
- + - +

+ ( )f
s

16
1

4

3
2 4 4 ln

1
. 38a

2 2 3 4

Note that the right-hand side of this equation does not exceed s/(16π).
The analogous examination of the amplitude gg

+-+-M , using equations (A9) and (24),
results in just the same bound (38).

The unitarity constraints for the amplitudes l l l l
gM Z

1 2 3 4
and l l l lM ZZ

1 2 3 4
differ from the above

presented bounds for l l l l
ggM
1 2 3 4

(with the same helicities) by the factors 2sw/cw; 1.1 and

s c 0.3w w
2 2 , respectively, neglecting small corrections of ( )m sO Z or ( )m sO Z

2 . In part-
icular, imposing unitarity constraint on the amplitude g

++++M Z , we get the lower bound (up to
small corrections ( )m sO Z

2 )

p e-


∣ ∣
( )f

s

c

s1

4 1
. 39a

w

w

2

This constraint is slightly stronger than (27). Unitarity bounds for most of the other helicity
amplitudes with the Z boson(s) are suppressed by small factors m sZ or m sZ

2 . The
constraint (39) appears to be the strongest unitary bound.

The bound (39) has been derived by neglecting ALP width Γ2 (5) which, in its turn,
depends on fa, see equation (6). If we will take the ALP width into account, our bound (39) is
modified as follows,
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p gg- + 


( ) [ ( )]
( )s

c

s

f s m m a16 Br
1. 40w

w
a a a

2

2 4 2 2 8 2

We see that in the large mass region gg ( ) ( )m s s c aBra w w
2 inequality (40) is satisfied

for all fa. It means that for such values of ma there is no unitary limit. In the region
gg< ( ) ( )m s s c aBra w w

2 we obtain from (40) that the following inequality takes place

e gg
p e

>
- 

-
( ) [ ( )]

( )
( )f

s s c aBr

4 1
. 41a

w w2
2 4 2

In the limit Γa→ 0 (which is equivalent to the limit Br(a→ γγ)→∞ ), we reproduce
equation (39). The unitary bounds for different center-of-mass energies and ALP branching
ratios are presented in figure 5. We conclude that the unitarity is not violated in the region of
the ALP coupling -fa

1 studied in the present paper.

4. Conclusions

The different ALP production mechanisms at high-energy muon collider offer a rich phe-
nomenology, allowing us to examine a large range of the ALP mass and couplings. In the
present paper, we have examined the possibility to search for heavy axion-like particles in the
μ+μ−→ μ+γγμ− scattering at the future muon collider. The studies are presented for the
collision energies of 3 TeV, 14 TeV, and 100 TeV and integrated luminosities of 1 ab−1, 20
ab−1, and 1000 ab−1, respectively. We have obtained the explicit expressions for the helicity
amplitudes for the Zγ→ γγ and ZZ→ γγ collisions. Using these amplitudes (as well as
known helicity amplitudes for the γγ→ γγ collision), the differential cross sections versus
invariant mass of the final photons and total cross section versus minimal diphoton invariant
mass are calculated. As a result, the 95% C.L. exclusion regions for the ALP-gauge boson
coupling coming from the μ+μ−→ μ+γγμ− scattering at the high-energy muon collider are
obtained. The excluded areas extend to wider regions in comparison to the region obtained
previously for the polarized light-by-light scattering at the 3 TeV CLIC. Our constraints are
also much stronger than the current experimental bounds presented in figure 6. The partial-
wave unitarity bounds on the ALP-gauge boson coupling are estimated. We have shown that
the unitarity is not violated in the region of the ALP coupling which has been studied in our
paper. We can conclude that the future muon collider has a great physical potential in
searching for axion-like particle couplings to the SM gauge bosons.

Data availability statement

No new data were created or analyzed in this study.

Appendix. Helicity amplitudes

A.1. γγ→ γγ scattering

The Mandelstam variables for the γγ→ γγ collision satisfy the relation s+ t+ u= 0, and we
get

q q=
-
+

= -
+

( )u t

u t

tu

t u
cos , sin

2
, A1
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q q= - - = - +( ) ( ) ( )t
s

u
s

2
1 cos ,

2
1 cos . A2

The helicity amplitudes of the LBL scattering are known to be [12]

= -
- + G

gg
++++ ( )M

f

s

s m im

4
, A3

a a a a
2

2

2

=gg
+++- ( )M 0, A4

=gg
++-+ ( )M 0, A5

gg
+-++ ( )M 0, A6

q q

=
- + G

+
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+
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s m im
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4

1 cos 1 cos
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2

2
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2

2

q
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-
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1 1 cos
, A8

a a a a
2
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2

q
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+
- + G
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+-+-

( ) ( )M
f

s

u m im

1 1 cos
, A9

a a a a
2

2 2

2

=gg
+--- ( )M 0. A10

Other helicity amplitudes l l l l
ggM
1 2 3 4

can be obtained by the P-parity relation

=l l l l
gg

l l l l
gg
- - - - ( )M M . A11

1 2 3 4 1 2 3 4

A.2. Zγ→ γγ scattering

The Mandelstam variables for this process obey the relation + + =s t u mZ
2, variables qcos ,

qsin are given by equation (A1), and

q q= -
-

- = -
-

+( ) ( ) ( )t
s m

u
s m

2
1 cos ,

2
1 cos . A12Z Z

2 2

Our calculations result in the following analytic expressions for the helicity amplitudes of the
Zγ→ γγ process:

=
-

- + G
g

++++
( )

( )M
s

c f

s s m

s m im

8 1
, A13Z w

w a

Z

a a a
2

2

2
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c f
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2 1 sin
, A14Z w
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2

2 2 2

2
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-
- + G
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( )M

s

c f

m s m

u m im

2 1 sin
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w a

Z Z
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2

2 2 2

2
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Other amplitudes l l l l
gM Z

1 2 3 4
can be obtained by relation [84]

= -l l l l
g l

l l l l
g-

- - - -( ) ( )M M1 , A27Z Z1
1 2 3 4

1
1 2 3 4

where λ1 is a helicity of the Z boson.
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A.3. ZZ→ γγ scattering

The Mandelstam variables obey the relation + + =s t u m2 Z
2, and we obtain
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We have derived the following helicity amplitudes of the ZZ→ γγ process:
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Other helicity amplitudes l l l lM ZZ
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can be obtained using relation [85]
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where λ1, λ2 are helicities of the colliding Z bosons.
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