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Abstract
Environmental pollution with the dye produced by the textile industry causes a serious problem worldwide. The aim of 
the study is to use the environmentally friendly and low-cost Streptomyces griseobrunneus (S. griseus S15) dead cells for 
the adsorption of safranin O from aqueous milieu. Optimum retention was achieved with 200 mg/L safranin O and 25 g/L 
adsorbent at pH 9. Biosorption was found to better fit the Langmuir isotherm and PSO kinetics. The maximum biosorption 
(qmax) was 188.67 mg/g. The reaction between S. griseus S15 and safranin O was chemical, exothermic, and spontaneous. 
S. griseus S15 biomass was reusable. Molecules supposed to be involved in the process were investigated by using a Gauss-
ian software program, calculations B3LYP, HF, and M06-2X, 6-31G, 6-31++G, and 6-31++G**. For molecular docking 
calculations, the affinity of safranin O molecule to various proteins was investigated. Finally, ADME/T was applied to gain 
an insight into the possible effects of safranin O on human health.
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1 Introduction

Textile industry alone constitutes nearly one-seventh of the 
total world manufacture [1]. It is also one of the foremost 
freshwater consumers, making it a heavily polluted waste-
water discharger. Many of the dyes ending up in wastewater 
have global detrimental consequences [2–4]. The elimina-
tion of dyes from industrial vents has therefore been given a 
substantial consideration [5], and a wealth of data have been 
made available [6–8]. For the most part, the treatment of 
textile wastewater is based on processes that were helpful up 
to a certain point [9] as the cost of the treatment processes 
and large quantities of by-products produced have been pos-
ing other problems [10]. To this end, the biological adsorp-
tion has been thought to provide better means to tackle 

such complications [11, 12]. It is a relatively inexpensive 
approach compared to other physical and chemical treat-
ments [13], and dead or alive fungal and bacterial adsorp-
tion has been widely exploited in wastewater management 
[12–15]. Live cells bind the positively charged dye particles 
on the cell-wall surface thanks to the presence of negatively 
charged polysaccharides, proteins, and lipids in Fig. 1 [12].

Biosorbents are the cost-effective versatile materials 
for the removal of toxic pollutants or for the recovery of 
valuable ions from aqueous wastewater [16–19]. The main 
advantages of this technology over conventional technolo-
gies include ability to regenerate, high efficiency, sludge 
minimization [7].

It could be emphasized that using bacteria as a precur-
sor for the bioremediation of dyes yields better results in a 
wide variety of procedures and conditions [20, 21]. Bacterial 
strains are capable of reducing and converting many toxic 
compounds into non-toxic end-products [22]. Many bacterial 
species have been exploited for decolorization of wastewater 
and dye degradation [23, 24].

Actinobacteria are metabolically diverse Gram-positive 
microorganisms. They share some morphological properties 
with both bacteria and fungi [25]. Streptomyces, an actinobac-
terial genus, comprises majority of the antibiotic producing 
species [26]. They breakdown cellulose and produce humus. 

 * Burak Tüzün 
 theburaktuzun@yahoo.com

1 Department of Molecular Biology and Genetics, Science 
Faculty, Sivas Cumhuriyet University, Sivas, Turkey

2 Department of Chemical Engineering, Faculty 
of Engineering, Sivas Cumhuriyet University, Sivas, Turkey

3 Plant and Animal Production Department, Technical 
Sciences Vocational School of Sivas, Sivas Cumhuriyet 
University, Sivas, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s13399-023-04558-2&domain=pdf
http://orcid.org/0000-0002-0420-2043
Lenovo
Vurgu



 Biomass Conversion and Biorefinery

1 3

Furthermore, several species of this genus have the ability 
to use paint contaminants as the sole carbon source [27, 28].

Bacteria possess two types of cell wall, gram-positive 
with a thick cell surface peptidoglycan layer connected 
by amino acid bridges, and gram-negative, consisting of a 
relatively much thinner (10-20%) peptidoglycan layer, com-
plexed with phospholipids and lipopolysaccharides.

Recent studies have demonstrated that theoretical calcula-
tions become very important in many stages from synthesis 
and characterization to activity comparison [28]. Gaussian 
software and Maestro Schrödinger are the most widely used 
and known among these [29–31]. Chemical quantum proper-
ties of polluting molecules can provide important clues as 
to their interactions with the molecules of biosorbent [32], 
using the Maestro Schrödinger program. ADME/T calcula-
tions are often performed with the same program to envisage 
the effects, reactions, and movements of molecules in human 
metabolism.

Safranin O is a cationic salt in Fig. 2. The structural 
complexity and stability of the safranin create problems 
during its biodegradation [33]. This dye can damage 

nucleic acids and disposes humans to carcinogenicity. 
Environmentally friendly and cost-effective S. griseus 
S15 dead cells were preferred for the adsorption of 
safranin O from the aqueous medium. Factors affect-
ing biosorption, namely pH, biosorbent dose, initial dye 
concentration, adsorption kinetics as well as desorption 
capacity and reusability were investigated. Molecu-
lar docking was employed to examine the interaction 
between the safranin O and the bioadsorbent.

2  Experimental sections

2.1  Materials

Safranin O, ethanol (EtOH), hydrochloric acid (HCl), 
sodium hydroxide (NaOH) used in the experiments were 
of analytical purity and obtained from Merck and Sigma-
Aldrich companies.

2.2  Biosorbent characterization

Functional groups on the biosorbent surface were explored 
by Fourier Transform Infrared (FTIR) Spectrometer (ATR, 
Bruker, Tensor II) before and after biosorption. Its surface 
morphology was imaged by scanning electron microscopy 
(SEM) (TESCAN MIRA3 XMU) at CÜTAM Central Labo-
ratory of Sivas Cumhuriyet University, Turkey.

2.3  Preparation of the biosorbent

In the biosorption of safranin O on bacterial biomass, 
Streptomyces griseobrunneus, previously isolated from 
soil [34], was used (GenBank Accession Number: 
MW077440). S. griseus S15 was obtained in LB culture 
in a 250 mL, 500 mL vessel, for 24h by shaking at 150 

Fig. 1  Interaction of dye and 
microbial cell
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Fig. 2  Chemical structure of safranin O
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rpm at 37°C. Cells were weighed [35] after precipitating 
for 10 min at 5000 rpm (Eppendorf 128 5804, Germany) 
and dried for 24h at 40°C.

2.4  Adsorption reaction

Safranin O, 1000 ppm, was dissolved in deionized water, and 
this stock solution was used in the 24-h adsorption reaction, 
10 mL. The reaction conditions were as follows: reaction 
temperature, 25°C; biosorbent, 50 mg; pH range 1, 3, 5, 7, 
9, and 11. The reaction mixture was agitated by shaking. pH 
was adjusted with 0.01M HCl or NaOH. In kinetic experi-
ments, varying dye concentrations, between 30 and 250 
mg/L, and time intervals, between 10 and 1440 min, were 
employed. The biosorbent was precipitated by centrifugation 
[36, 37], and unbound dye was estimated at 520 nm.

The biosorption efficiency was calculated with Eq. 1, 
below. The biosorption capacity (qe) of biosorbent was cal-
culated with Eqs. 2 and 3.

Co, the initial dye concentration (mg/L); C, the dye con-
centration (mg/L) at time t; qe, the biosorption capacity 
(mg/g) at equilibrium; qt, the biosorption capacity (mg/g) 
at t = t; Ce, the final concentration (mg/L); V, the solution 
volume (mL); and m, the biosorbent amount (g).

2.5  Recovery studies

Tree different tubes were taken and labeled, EtOH, HCl, 
NaOH, into which dye solution and 50 mg of sample were 
added and incubated for 24h. Three-milliliter solutions were 
saved, and the remainder was centrifuged. Onto the pellets, 
10 ml of either of 0.1 M HCl, EtOH, NaOH was added and 
washed for 15 min. This process was repeated once more. The 
pellets were likewise washed with  dH2O. Samples taken as 
equilibrium 1, 2, 3, 4, 5 were measured in a spectrophotometer 
at 520 nm. % Desorption was calculated by Eq. 4 [38].

Qads, dye adsorbed (mg/g), and  Qdes, desorbed dye (mg/g).

(1)%Biosorption efficiency =
Co − C

Co
× 100

(2)qe =
(Co − Ce).V

m

(3)qt =
((Co − Ct).V)

m

(4)Desorption% =
Qdes

Qads

× 100

2.6  Theoretical methods

Hypothetical assessments yield significant data on the func-
tional aspects of molecules. Numerous chemical quantum 
factors can be included into t. The calculated parameters 
were used to explain the chemical activities of the mol-
ecules. Gaussian09 RevD.01 and GaussView 6.0 [39, 40] 
software was employed, and assessments were obtained 
in B3LYP, HF, and M06-2x with 6-31G, 6-31++G, and 
6-31++G** basis set [41, 42].

An important method used to determine the molecules 
with the highest activity against biological materials is 
molecular docking. Molecular docking calculations were 
performed in Schrödinger’s Maestro Molecular modeling 
platform (version 12.8) [43]. The calculations give informa-
tion on the active groups of molecules. Calculations included 
several modules, the first of which was the protein prepa-
ration module [44]. The second step involved the LigPrep 
module [45]. Glide ligand docking step involved the interac-
tion taken place between proteins and other molecules [46]. 
Finally, the Qik-prop module of the Schrödinger software 
[47] was used to perform ADME/T analysis (absorption, 
distribution, metabolism, excretion, and toxicity) in order to 
predict the effects of the molecules on human metabolism.

3  Results and discussions

3.1  Structural analyses of the biosorbent

3.1.1  FTIR analysis

FTIR spectra of S. griseus S15 were obtained before and 
after safranin O biosorption (Fig. 3). The broad peak at 
approximately 3271  cm−1 signified the O–H bond and N–H 
band [48, 49]. A C–H asymmetric stretch was identified at 
2922  cm−1 [34]. An aromatic ring stretching vibration was 
observed at 1633  cm−1, while a  CH3 stretching vibration 
was found at 1452  cm−1. An aromatic C=N stretching vibra-
tion was seen at 1397  cm−1. The aromatic C=N stretching 
vibration of the chromophore of safranin O was detected 
at 1394  cm−1 [50]. A C–H bond vibration was indicated at 
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1041  cm−1 [51]. The intensity of some peaks decreased or 
increased after adsorption, indicating that the dye molecules 
were specifically loaded on the bioadsorbent via hydrogen 
bonding or electrostatic attractions [51, 52].

3.1.2  SEM analysis

The surface properties of the S. griseus S15 were examined 
by SEM before and after safranin O biosorption in Fig. 4a, 
b, respectively. S. griseus S15 appeared to be swollen after 
adsorption. Hence, distinct round, ellipsoidal, and wavy 
structures, in Fig. 4a, became fuzzy and less distinct in 
Fig. 4b [53].

3.2  Biosorption procedure

3.2.1  The role of pH

pH is a key factor since it disturbs the surface charges of 
both the adsorbent and dye [52]. In this study, the zero-point 
charge  (pHpzc) of the biosorbent was investigated by keep-
ing the initial pH value of the solution within 2 and 12, with 
0.1 M  KNO3 in Fig. 5a. The  pHpzc value was determined at 
6.89, indicating that the amount of negative charge of the 

Fig. 3  FTIR spectra of before and after biosorption

Fig. 4  SEM images of S. 
griseus S15 before (a) and after 
biosorption (b)

Fig. 5  Effect of solution pH on biosorption (%) (a) and qe (b)
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biosorbent surface increased at pH points above the  pHpzc 
value [52].

The role of pH on the adsorption was investigated in 
Fig.  5b. The highest biosorption efficiency, 88%, was 
achieved at pH 9 where biosorption capacity was calculated 
to be 34.8 mg/g. It was evidenced that both the efficiency 
and capacity of biosorption increased in elevated levels of 
 OH− on the biosorbent surface, enabling an electrostatic 
interaction with the cationic safranin O [49]. Expectedly, 
after reaching a certain pH point, biosorption efficiency 
started to decrease. Two possible explanations were made 
for this phenomenon: (1) the solubility of the dye increased 
at high pH, and the adsorption decreased; (2) at high pH, 
safranin O started to lose protons and, as a consequence, the 
electrostatic interaction decreased [54].

3.2.2  Biosorbent concentration

Biosorbent dose is an important parameter affecting biosorp-
tion [51]. The effect of biosorbent dose on biosorption was 
investigated in the range of 3 g/L and 25 g/L, keeping the 
initial dye concentration constant in Fig. 6. It could be seen 

that the biosorption efficiency and biosorption capacity 
steadily increased in proportional to biosorbent dose. This 
can be caused by the agglomeration of some dye molecules 
on the biosorbent surface [55] or due to the overlapping of 
the biosorption sites [52].

3.2.3  Role of dye concentration

The effect of the initial dye concentration on the biosorp-
tion was investigated at safranin O concentrations ranging 
from 10 to 1000  mgL−1 in Fig. 7. After around 200 mg/g, 
the biosorption efficiency decreased. After a certain con-
centration, the active sites on the biosorbent surface reached 
saturation [52]. The highest biosorption efficiency, 77%, was 
obtained with 200  mgL−1 safranin O and 5  mgL−1 biosorb-
ent dose.

The Langmuir isotherm (Eq. 8) indicates homogeneous 
biosorbent structure and the presence of monolayer biosorp-
tion. Freundlich isotherm expresses heterogeneous biosorbent 
surface and multilayer biosorption (Eq. 9). Temkin isotherm 
expresses the energy and heat distribution between sorbent 
and sorbate (Eq. 10). Kl  (mgL−1), Langmuir constant; Kf, 
Freundlich constant; n Freundlich isotherm constant; qmax, 
maximum biosorbent capacity; KT, the constant of the Tem-
kin isotherm; β, the constant related to the heat of biosorption. 
If Freundlich isotherm constant value, n, is 0, the process is 
linear; if less than 1, the process is physical; and if greater than 
1, the process is chemical.

(8)
1

qe
=

1

qmax
+

(

1

KL.qmax

)

(

1

Ce

)

(9)Lnqe = LnKf +
(

1

n

)

LnCe

(10)qe = �.LnKT + �.Ln Ce

Fig. 6  Effect of biosorbent dose on biosorption efficiency and qe

Fig. 7  The role of initial dye concentration on biosorption efficiency 
and qe

Table 1  Data of isotherm 
models

Isotherm model Value

Langmuir
R2 0.98
KL (L/g) 0.00215
qmax (mg/g) 188.67
Freundlich
R2 0.89
1/n 0.8165
Kf (L/g) 0.68
Temkin
R2 0.73
KT (L/g) 7.515
β 18.257
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Fig. 8  Isotherm models: a) Langmuir, b) Freundlich, and c) Temkin

Fig. 9  Kinetic models: a) PFO, b) PSO, and c) Elovich model
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Langmuir isotherm, qmax and KL, were calculated to be 
188.67 mg/g and 0.00215 L/g, respectively in Table 1. The 
highest Langmuir isotherm was R2=0.98 in Fig. 8. This 
result indicated that the safranin O was absorbed as an even 
monolayer [48, 56].

3.2.4  Kinetic calculations

To better understand the biosorption mechanism, reaction 
kinetics were investigated using pseudo-first-order (PFO, 
Eq. 11), pseudo-second-order (PSO, Eq. 12), and Elovich 
models in Fig. 9 (Eq. 13). Here, k2 is the reaction constant 
for PSO, and α and β are Elovich model constants.

The order in which the kinetics of the reaction biosorp-
tion process followed in relation to the R2 values was PSO> 
PFO> Elovich. The R2 value of the PSO was determined as 
0.98, and the k2 value was determined as 0.002 mg/g min. 
Additionally, this result confirmed that the biosorption pro-
cess was chemical [57, 58].

(11)log
(

qe − qt
)

= logqe −
k1

2.303
t

(12)
t

qt
=

1

k2.qe2
+

1

qe
t

(13)qt =
1

�
ln (�.�) +

1

�
ln t

3.2.5  Biosorption thermodynamics

The effect of temperature on the biosorption was investi-
gated at 5, 25, and 45°C, and enthalpy energy (∆H, kJ/mol), 
entropy change (∆S, kJ/mol K), and free energy change 
(∆G, kJ/mol) were determined in Fig. 10, and Eqs. 14, 15, 
and 16. Using Van’t Hoff equation (Eq. 15), Ln Kc vs. 1/T 
values were defined and plotted in Fig. 10.

Kc,the equilibrium constant; Ca, the amount of dye retained 
per unit mass of biosorbent (mg/g); Ce, unbound dye (mg/L); R, 
the ideal gas constant, 8.314 J/mol K; and T, temperature (K).

The ∆H and the ∆S values were −13.59 kJ/mol and 
−31.19 J/K mol, respectively. Negative ∆H indicated that 
the biosorption was exothermic. ∆G values were −22.2, 
−22.8, and −23.5 kJ/mol at 5, 25, and 45 °C, respectively. 
These results indicated that the interaction between S15 and 
safranin O dye occurred spontaneously [59, 60].

Qmax of the S. griseus S15 was compared with those of 
some other biosorbents (Table 2). Although the biosorbent 

(14)Kc =
Ca

Ce

(15)In Kc =
ΔS

R
−

ΔH

R
.
1

T

(16)ΔG = ΔH − TΔS

Fig. 10  Biosorption thermodynamic (Co: 200 mg/L, m: 50 mg, tem-
perature: 25 0C, contact time: 24 h)

Table 2  Comparison of qmax 
values in adsorption of safranin 
dyes with various sorbents

Biosorbent qmax (mg/g) Dye Contact time References

Modified red mud 89.4 Safranin O 90 min 37
Lolium perenne seeds 322.58 Safranin T 60 min 40
Lignin NPs 99 Safranin O 100 min 47
Lignin NPs-g-polyacrylic acid 138.8 Safranin O 100 min 47
S. griseus S15 188.67 Safranin O 1440 min This study

Fig. 11  Desorption of safranin O with different solvents (Co, 200 
 mgL−1; m, 50 mg; temperature, 25 0C, time, 24 h)
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was used without any treatment, it could be clearly seen that 
S. griseus S15 had a highest qmax after the Lolium perenne 
seeds.

3.2.6  Desorption capacity

Reusability is an important biosorbent feature [56]. The final 
experiments constituted desorption of bound dye in differ-
ent solvent environment: HCl, NaOH, and ethanol (Fig. 11). 
Desorption values were 68%, 74%, and 60% in HCl, NaOH, 
and ethanol solution, respectively. This result paves the way 
for the reusability of S. griseus S15.

3.3  Theoretical calculations

Theoretical calculations were performed to find and compare 
the activities of molecules, to determine their active sites, 
and to increase their activities [46]. The most important fac-
tor in determining the activities of molecules is to define the 
electron density of a molecule [61].

HOMO determines the electron-donating ability of the 
molecules in Fig. 12 [62]. A molecule with a higher HOMO 
will easily donate its electrons. LUMO values indicate the 
electron-accepting abilities of the molecules in Table 3 [63].

Another calculated parameter, ∆E, is known to yield high 
activity values for molecules with a low numerical value [64]. 
Electronegativity is the force of attraction of bond electrons of 
atoms in the molecule. Electronegativity values, similarly, are 
high for the molecules with the lowest numerical value [65].

Fig. 12  A schematic representation of HOMO and LUMO of safranin O

Table 3  The calculated quantum chemical parameters of molecules

EHOMO ELUMO I A ΔE η μ χ Pİ ω ε dipol Energy

B3LYP/6-31g level
−3.1416 −0.4114 3.1416 0.4114 2.7301 1.3651 0.7326 1.7765 −1.7765 1.1560 0.8651 5.3956 −26,994.7866
B3LYP/6-31++g level
−3.4915 −0.8452 3.4915 0.8452 2.6463 1.3232 0.7558 2.1684 −2.1684 1.7767 0.5628 5.3075 −26,995.8364
B3LYP/6-31++g** level
−3.6243 −0.9241 3.6243 0.9241 2.7002 1.3501 0.7407 2.2742 −2.2742 1.9154 0.5221 4.7844 −27,003.6076
HF/3-21g level
−6.1025 3.5922 6.1025 −3.5922 9.6947 4.8473 0.2063 1.2551 −1.2551 0.1625 6.1539 3.8910 −26,818.5923
HF/6-31g level
−6.2905 0.9440 6.2905 −0.9440 7.2345 3.6172 0.2765 2.6733 −2.6733 0.9878 1.0123 3.7350 −26,819.2726
HF/SDD level
−6.3757 0.9282 6.3757 −0.9282 7.3039 3.6519 0.2738 2.7237 −2.7237 1.0157 0.9845 3.4542 −26,830.4155
M062X/3-21g level
−4.2521 0.5823 4.2521 −0.5823 4.8344 2.4172 0.4137 1.8349 −1.8349 0.6964 1.4359 5.3462 −26,983.8746
M062X/6-31g level
−4.5403 −0.2890 4.5403 0.2890 4.2513 2.1256 0.4704 2.4146 −2.4146 1.3714 0.7292 5.2596 −26,984.7412
M062X/SDD level
−4.6499 −0.3053 4.6499 0.3053 4.3446 2.1723 0.4603 2.4776 −2.4776 1.4129 0.7078 4.7911 −26,991.8422
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Many quantum parameters of the molecules were cal-
culated, and some of the results were presented visually in 
Fig. 13. ESP (electrostatic potential) map of the molecules 
yields information about the electron density in the mol-
ecule. The red-colored regions, indicating the presence of 
heteroatoms, are electron-rich regions. On the other hand, 
the blue-colored regions with carbon and hydrogen atoms 
in general, are the electron-poor regions [61].

It is possible to comment on the activity by molecu-
lar docking calculations of molecules with various bio-
logical materials. These calculations predict the active 
sites of molecules, the interaction sites of molecules, and 
the interactions with the proteins of bioadsorbent [62]. 
The most important factor that determines the activities 

of molecules with molecular docking calculations is 
the interaction between molecules and proteins. More 
interaction means more inhibition. For this reason, the 
chemical interactions, involving hydrogen bonds, polar 
and hydrophobic interactions, π–π bonds, between the 
molecule and the protein become important in Figs. 14 
and 15 [63].

The activities of the molecule against various proteins 
were compared Table 4. In the comparisons, the docking 
score parameter was determined on the basis of its numerical 
value. The most negative numerical value indicates the high-
est activity. Besides, Glide ligand efficiency, Glide hbond, 
Glide evdw, and Glide ecoul numerical values indicate inter-
actions between dye molecules and proteins [46, 62].

Fig. 13  A schematic representa-
tion of the optimize structure 
(a) and ESP of safranin O (b)

Fig. 14  Interactions of afzelin with bacterium Streptomyces sp Fig. 15  Presentation interactions of afzelin with hCA I enzyme
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Comparing the interactions of safranin O by ADME/T 
with various cellular proteins theoretically enabled us to pre-
dict whether this dye could have a drug potential in Table 5. 
The entry of the molecule into human metabolism implicates 
many processes including movements in metabolism and 
excretion from metabolism.

There are parameters useful in examining the chemical 
properties of molecules: mol_MW (mole mass of mol-
ecules), dipole (dipole moment), SASA (solvent acces-
sible surface area), volume (molecule volume), donorHB 
and accptHB (number of hydrogen bonds that a molecule 
receives and gives off) [66]. In addition, there are also many 
parameters that examine the biological properties of mol-
ecules: QPlogHERG (Predicted IC50 value for blockage of 
HERG K+ channels), QPPCaco and QPPMDCK (blood-
brain and blood-bowel barriers), QPlogKp (predicted skin 
permeability), QPlogKhsa (prediction of binding to human 
serum albumin), and HumanOralAbsorption (predicted 
qualitative human oral absorption) [67].

4  Conclusion

The main aim of the study was to evaluate the biosorption 
potential of safranin O dye. For this purpose, S. griseus S15 
isolated from the soil was used in biosorption experiments, 
and it was determined that the selected bacterial strain effec-
tively removed safranin O dye. It was also concluded that 
S. griseus S15 biomass was a successful biosorbent in the 
biosorption of safranin O dye. The calculations show that the 
results of both Gaussian software calculations and molecular 
docking calculations of the molecule provide information 
about the active site of the molecule and many chemical 
and biological properties. When the ADME/T calculations 
made later are examined to apply the molecules to human 
metabolism, it is seen that the molecules meet the desired 

conditions. The results obtained will be an important guide 
for many future studies.
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Table 4  Numerical values of all docking parameters

Streptomyces sp.

Docking score −5.71
Glide ligand efficiency −0.24
Glide hbond 0.00
Glide evdw −30.50
Glide ecoul −1.89
Glide emodel −41.40
Glide energy −32.39
Glide einternal 2.60
Glide posenum 377

Table 5  ADME properties of molecule

*Corcern below –5
**<25 is poor and >500 is great
***<25% is poor and >80% is high

Molecule Reference range

mol_MW 314 130–725
dipole (D) 7.7 1.0–12.5
SASA 591 300–1000
FOSA 166 0–750
FISA 115 7–330
PISA 310 0–450
WPSA 0 0–175
volume  (A3) 1028 500–2000
donorHB 2.5 0–6
accptHB 3.5 2.0–20.0
glob (Sphere =1) 0.8 0.75–0.95
QPpolrz  (A3) 36.7 13.0–70.0
QPlogPC16 11.3 4.0–18.0
QPlogPoct 18.4 8.0–35.0
QPlogPw 10.7 4.0–45.0
QPlogPo/w 3.5 −2.0–6.5
QPlogS −5.2 −6.5–0.5
CIQPlogS −5.2 −6.5–0.5
QPlogHERG −5.7 *
QPPCaco (nm/s) 803 **
QPlogBB −0.7 −3.0–1.2
QPPMDCK (nm/s) 390 **
QPlogKp −2.4 Kp in cm/h
IP (ev) 7.7 7.9–10.5
EA (eV) 1.0 −0.9–1.7
#metab 4 1–8
QPlogKhsa 0.5 −1.5–1.5
Human Oral Absorption 3 -
Percent Human Oral Absorption 100 ***
PSA 62 7–200
RuleOfFive 0 Maximum is 4
RuleOfThree 0 Maximum is 3
Jm 0.0 -
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