
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20

Journal of Biomolecular Structure and Dynamics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tbsd20

Removal of Erythrosine B dye from wastewater
by Penicillium italicum: experimental, DFT, and
molecular docking studies

Serap Çetinkaya, Volkan Eyupoglu, Halil İbrahim Çetintaş, Ali Fazıl
Yenidünya, Özgür Kebabcı & Burak Tüzün

To cite this article: Serap Çetinkaya, Volkan Eyupoglu, Halil İbrahim Çetintaş, Ali
Fazıl Yenidünya, Özgür Kebabcı & Burak Tüzün (2023) Removal of Erythrosine B dye
from wastewater by Penicillium italicum: experimental, DFT, and molecular docking
studies, Journal of Biomolecular Structure and Dynamics, 41:23, 14212-14223, DOI:
10.1080/07391102.2023.2186704

To link to this article:  https://doi.org/10.1080/07391102.2023.2186704

Published online: 08 Mar 2023.

Submit your article to this journal 

Article views: 304

View related articles 

View Crossmark data

Citing articles: 4 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20
https://www.tandfonline.com/loi/tbsd20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07391102.2023.2186704
https://doi.org/10.1080/07391102.2023.2186704
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2023.2186704
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2023.2186704
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2023.2186704&domain=pdf&date_stamp=08 Mar 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2023.2186704&domain=pdf&date_stamp=08 Mar 2023
https://www.tandfonline.com/doi/citedby/10.1080/07391102.2023.2186704#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/07391102.2023.2186704#tabModule
Lenovo
Vurgu



Removal of Erythrosine B dye from wastewater by Penicillium italicum: 
experimental, DFT, and molecular docking studies 
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ABSTRACT 
The study involved the adsorption of Erythrosine B onto the dead, dry, and unmodified Penicillium ita-
licum cells and the analytical, visual, theoretical assessment of the adsorbent-adsorbate interactions. It 
also included desorption studies and reiterative usability of the adsorbent. The fungus was a local iso-
late and it was identified by partial proteomic experiment in a MALDI-TOFF mass spectrometer. 
Chemical features of the adsorbent surface were analysed by FT-IR and EDX. Surface topology was 
visualized by SEM. Isotherm parameters of the adsorption were determined by using three most fre-
quently used models. Erythrosine B appeared to form a monolayer onto the biosorbent and some of 
the dye molecules could have also penetrated into the adsorbent particles. Kinetic results suggested a 
spontaneous and exothermic reaction taken place between the dye molecules and the biomaterial. 
Theoretical approach involved the determination of some of the quantum parameters as well as the 
toxic or drug potentials of the some of the components of the biomaterial.   
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1. Introduction 

Textile industry is one of the main culprits of aqueous waste 
as it consumes between 200 and 500 L of water per kg of a 
finished textile product (Singh & Khajuria, 2018; 
Vijayaraghavan & Yun, 2008; Waghmode et al., 2012). The 
water used is usually contaminated with a variety of syn-
thetic dyes as well as surfactants, and volatile organic com-
pounds (Balapure et al., 2015; Chen et al., 2009). 

Global dye consumption in the textile sector has been 
estimated to be over 10,000 tons per year, and 10–15% of 

this amount end up in wastewater (Kunamneni et al., 2008; 
Pereira & Alves, 2012; Saratale et al., 2011). The release of 
contaminated waste into the environment not only adversely 
affects the appearance of the water, but also causes severe 
toxicity to the exposed fauna and flora species (Danouche 
et al., 2021; Fu & Viraraghavan, 2001). 

Most frequently used methods for wastewater treatment 
have been flocculation, coagulation, precipitation, biosorp-
tion, membrane filtration, and electrochemical techniques 
(Malik & Sanyal, 2004). Among these biosorption has often 
been preferred as it has been relatively more effective and 
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less expensive. Various agricultural biomass waste has been 
exploited in this process: peat (Allen et al., 2004), pine bark 
powder (Ahmad, 2009), tomato root (Kannan et al., 2009), 
soybean (Mittal et al., 2010), grass, japonica, rice- and wheat 
bran (Wang et al., 2008), and almond shells (Atmani et al., 
2009; Kumar & Ahmad, 2011). Microbial organisms also con-
stitute a versatile source of biomass for adsorption (Wang 
et al., 2015). Fungal cells, for example, can easily be obtained 
as by-products of brewing industries (Salvi & Chattopadhyay, 
2017). Studies have shown that inactive (dead and dry) fun-
gal biomass has advantages over live biomass as it does not 
require the addition of nutrients. They also do not produce 
chemicals inhibitory to adsorption or toxic compounds detri-
mental for aquatic life. In addition, inanimate biomass has 
high storage stability and can be reused many times as it 
allows easy elution of adsorbed materials (Souza et al., 2020). 
In recent years, the adsorption method has been tried to 
remove some hazardous substances (Kamal et al., 2020, 
2022). 

Various studies have focused on the biosorption of dyes 
with microorganisms such as algae (Aksu & Tezer, 2005), 
fungi (O’Mahony et al., 2002), bacteria (Hu, 1996) and yeasts 
(Aksu & D€onmez, 2003). Among them, mould biomass is 
envisaged as the most efficient and least expensive biosorb-
ent (Fu & Viraraghavan, 2001; Maurya et al., 2006; Saeed 
et al., 2009; Vijayaraghavan et al., 2008). Both macro- and 
micro fungi have also been used as biosorbent: Trametes ver-
sicolor (Bayramo�glu et al., 2006), Ganoderma applanatum 
(Matos et al., 2007), Funalia trogii (Yesilada et al., 2002), 
Rhizopus (Zeroual et al., 2006), Aspergillus flavus (Gajera et al., 
2015), Aspergillus niger (Fu & Viraraghavan, 2002), and 
Penicillium fellutinum (composite with bentonite) (Bouras 
et al., 2017; Rashid et al., 2016). 

Due to their potential toxicity and carcinogenic effects, 
dyes have been the subjects of a wide variety of environ-
mental studies (Dotto & Pinto, 2011). Erythrosine B (C.I 
45430) is a water-soluble anionic xanthene dye (Figure 1) 
and widely used especially in the food, cosmetic, and 
pharmaceutical industries (Al-Degs et al., 2012; Sharifzade 
et al., 2017). It is a widely used industrial dye and appears to 
have some serious toxic properties as it has been evidenced 
to cause allergic reactions in the eyes, irritation of the skin 
and upper respiratory tract, severe headaches, nausea, water- 

borne diseases such as dermatitis. What is more, free iodine, 
which is released by the degradation of this dye compound 
in nature, may adversely affect thyroid functions and can be 
an agent of atopic diseases (Salvi, 2018; Uysal & Aral, 1998). 

In this study, the efficacy of a new biosorbent prepared 
from inanimate Penicillium italicum in removing Erythrosine 
B, was investigated. To enable the process to be economical, 
the fungus was not chemically modified and fed on low-cost 
nutrients. The research basically involved kinetic, isothermic, 
and thermodynamic analyses of the adsorption. Desorption 
studies were also carried out. Some computational analyses, 
using Gaussian09 RevD.01 and GaussView 6.0 (Dennington 
et al., 2016; Frisch et al., 2009) and B3LYP, HF, and M06-2x 
(Becke, 1992; Hohenstein et al., 2008; Vautherin & Brink, 
1972) programs, have been performed to assess both the 
chemical and biological activities of molecules. In order to 
calculate the biological activity of after molecules, their activ-
ity against the crystal structure of Penicillium proteins (PDB 
ID: 2NC2 (Huber et al., 2018) and 2NB0 (Holzknecht et al., 
2022)) was calculated. Finally, ADME/T calculations were 
made to examine the drug ability of the adsorbent material. 

2. Materials and methods 

2.1. Preparation of biosorbent 

Penicillium italicum was isolated from an artisanal yogurt 
sample using PDA (potato dextrose broth: 15 g bacterio-
logical agar, 20 g dextrose and 4 g potato starch in g/L, pH 
5.6) for 5 d at 30 �C. Biomass for adsorption was prepared in 
300 ml PDA for 7d incubation at 30 �C at 150 rpm. The cul-
ture was centrifuged at 7,200 rpm for 10 min (Vimont et al., 
2019). 

2.2. Identification by mass spectrometry 

Partial protein homology by MALDI-TOFF Mass Spectrometry 
(Bruker IVD MALDI Biotyper, Sivas Cumhuriyet University 
Hospital) identified the yoghurt mould to be Penicillium 
italicum. 

2.3. Characterization of the biosorbent 

Dead and dry Penicillium italicum, biosorbent, was analysed 
by Fourier Transform Infrared (FTIR) Spectrometry (ATR, 
Bruker, Tensor II), Scanning Electron Microscope (SEM), 
Energy Dissipative X-Ray (EDX) at CUTAM Central Laboratory 
(Sivas Cumhuriyet University, Turkey), and by ultraviolet-vis-
ible Spectroscopy (TESCAN MIRA3 XMU, T-60, China). 

2.4. Effect of PZC on the biosorbent 

To determine the PZC values of biosorbent, the pH of 
0.1 mol L� 1 KNO3 solution was adjusted in the range 
between 1.0 and 12.0, using HCl or NaOH (0.1 mol L� 1). 
Biosorbent, 0.1 g, of was added. Initial pH values were plot-
ted against DpH to obtain PZC (Smiciklas et al., 2008), and 
final pH values were read after 24 h. Figure 1. Chemical structure of Erythrosine B dye.  
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2.5. Experimental design and biosorption tests 

Biosorption reactions were carried out for 24 h at 25 �C in 
10 mL final reaction samples at pH 7.15, including 50 mg bio-
sorbent and 500 mg L� 1 Erythrosine B. Using dye concentra-
tions between 10 and 1000 mg L� 1), the optimum dye 
retaining capacity was found to be 500 mgL� 1. Samples 
were then centrifuged (3500 rpm, 10 min). Erythrosine B 
remaining in the solution was determined at 525 nm by UV- 
Vis spectrophotometry (Çetinkaya et al., 2022; Salvi, 2018). 
Experiments were repeated thrice, controls (without biosorb-
ent) were performed in parallel. Adsorption percentage, 
Q (mol kg-1), and % desorption ARE calculated by Equations 
(1)–(3). 

Adsorption% ¼
Ci � Cf

Ci

� �

x100 (1]) 

Q ¼
Ci � Cf

m

� �

xV (2) 

Desorption% ¼
Qdes

Qads
x100 (3) 

where Ci, initial dye concentration (mg L� 1); Cf, dye concen-
tration (mg L� 1) at time t; m, dry biosorbent (g); V, reaction 
volume (L); Qads, dye adsorbed (mol kg� 1); and Qdes, des-
orbed dye (mol kg� 1). 

2.6. Isotherms of adsorption 

The equations below were used for the isotherm calculations 
(Baybaş & Ulusoy, 2011): 

Q ¼
XLKLCe

1þ KLCe
(4) 

Q ¼ KFCb
e (5) 

Q ¼ QDRe� KDRe
2

(6) 

e ¼ RTln 1þ
1

Ce

� �

(7) 

EDR ¼ 2KDRð Þ
� 0:5 (8) 

where Q (mol kg� 1), adsorbed material B; KL, isotherm 
parameters; Ce, the equilibrium concentration (mol L� 1); XL 

(mol kg� 1), maximum adsorbent capacity; KF, Freundlich con-
stant; b, biosorbent surface heterogeneity; XDR, a measure of 
adsorption capacity; R, the ideal gas constant (8.314 
Jmol� 1K� 1); T, the absolute temperature (K); KDR, the activity 
coefficient (mol2KJ2); e, the Polanyi potential. 

2.7. Calculation of the adsorption kinetics 

Adsorption kinetics were determined by three commonly 
used models: (PFO), pseudo-second-order (PSO) and intrapar-
ticle diffusion (IPD) (Baybaş & Ulusoy, 2011) (Equations 9–11). 

Qt ¼ Qe 1 � e� k1t½ � (9) 

Qt ¼
t

1
k2Q2

e

h i
þ t

Qe

h i (10) 

Qt ¼ kit0:5 (11) 

where Qt (mol kg� 1), adsorbed dye; t, (min) time; Qe (mol 
kg� 1), adsorption at equilibrium; k1, k2; ki, the rate constants 
of the PFO (min� 1); PSO (mol� 1 kg min� 1 IPD (mol� 1 kg 
min� 0.5). 

2.8. Thermodynamics of adsorption 

The parameters DH0 (enthalpy), DS0 (entropy), and DG0 

(Gibbs free energy) were calculated (Equations 12–15), and 
these thermodynamic parameters were used to see if the 
adsorption process was spontaneous (Şimşek et al., 2022). 

KD ¼
Q
Ce

(12) 

DG0 ¼ � RTlnKD (13) 

lnKD ¼
DS0

R
�

DH0

RT
(14) 

DG0 ¼ DH0 � TDS0 (15)  

2.9. Theoretical methods 

Using Gaussian09 RevD.01 and GaussView 6.0 programs 
(Dennington et al., 2016; Frisch et al., 2009) and B3LYP, HF, 
and M06-2x methods (3-21 g, lanl2dz, and STO-3G) a number 
of quantum parameters [HOMO (Highest Occupied Molecular 
Orbital), LUMO (Lowest Unoccupied Molecular Orbital), DE 
(HOMO-LUMO energy gap), chemical potential (l), electrophi-
licity (x), chemical hardness (g), and global softness (r)] 
were determined and nucleophilicity (e), dipole moment, and 
energy value were defined (Lakhrissi et al., 2022; Mermer 
et al., 2022). 

v ¼ �
oΕ
oN

� �

t rð Þ
¼

1
2

Iþ Að Þ ffi �
1
2

EHOMO þ ELUMOð Þ (16) 

g ¼ �
o2Ε
oN2

� �

t rð Þ
¼

1
2

I � Að Þ ffi �
1
2

EHOMO � ELUMOð Þ (17) 

r ¼ 1=g x ¼ v2=2g e ¼ 1=x (18)  

After the molecules were optimized by Gaussian software, 
they were used for calculations in LigPrep module 
(Schr€odinger Release 2021-3,3, 2021a). The Glide ligand dock-
ing module (Al-Janabi et al., 2022) was then used to examine 
the interactions between the molecules. Maestro Molecular 
modeling platform (version 12.8) was used for molecular 
docking calculations (Schr€odinger Release 2019-4,4, 2019; 
Schr€odinger Release 2021-3,3, 2021b). Calculations were 
made using the OPLS4 method in all calculations. Lastly, 
ADME/T (absorption, distribution, metabolism, excretion and 
toxicity) was assessed to gain some insight into drug poten-
tial of the studied molecules. The Qik-prop module 
(Schr€odinger Release 2021-3,3, 2021c) predicted the possible 
effects of the molecules in human metabolism. 
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3. Results and discussion 

3.1. FTIR analysis 

FTIR analysis of Penicillium italicum was carried out and the 
adsorption bands corresponding to various functional groups 
of important macromolecules such as carbohydrates, lipids, 
nucleic acids and proteins were defined and shown in 
Figure 2. The FT-IR spectra of untreated fungus presented a 
characteristic band at 3271 cm� 1 due to N-H stretching vibra-
tions from the proteins. The peak at 2924 cm� 1 corre-
sponded to symmetric stretching vibrations C-H bonds of 
lipids (Lecellier et al., 2015; Lozano et al., 2017). The adsorp-
tion bands located at 1644 cm� 1 and 1539 cm� 1 were 
assigned to C¼O stretching vibration of amide I and a mix-
ture of N-H bending and C-H stretching vibrations of amide 
II, respectively. These bonds were related to CH3 and CH2 

groups in proteins and fatty acids (Kamnev, 2013; Ye et al., 
2017). The band at 1373 cm� 1 was associated with -COO- 

symmetric stretching vibrations of carboxyl groups and 
amino acid side chains (Lozano et al., 2017). C-O stretching 
peak due to carbohydrates was observed at 1024 cm� 1 (Al 
Mousawi & Razaq, 2021). After treatment of P. italicum with 
the dye, some new peaks identical to Erythrosine B appeared 
in the FTIR spectra. These peaks were benzene ring stretch-
ing vibration appearing as a shoulder at 1625 cm� 1, -COO- 

symmetric stretching vibration at 1436 cm� 1 and stretching 
vibrations due to C-H in-plane deformation of xanthene ring 
at 1343 cm� 1 and 1233 cm� 1 (Kaur & Datta, 2013; 
Tonglairoum et al., 2017). Thus, the presence of Erythrosine B 
molecules on the adsorbent was confirmed by the FT-IR 
analysis. 

3.2. SEM-EDX analysis 

To examine the morphological alterations of Penicillium itali-
cum, SEM analysis was carried out before and after adsorp-
tion. The ultrastructure of the fungus consisted of flat and 
tubular shaped hyphae in accord with the usual morphology 
of P. italicum (Che et al., 2019; Li et al., 2021) (Figure 3a). The 

cell walls were covered with the dye molecules after the 
treatment (Figure 3c). This finding was confirmed by EDX 
analyses. After the adsorption process, 1.18% (w%) iodine 
content due to Erythrosine B was determined in the dye- 
treated samples (Figure 3b–d). 

3.3. Effect of pH 

Adsorption of Erythrosine B onto the dead biomass of 
Penicillium italicum was significantly efficient, 99%, at pH 2 
(Figure 4). Reactive hydroxyl-, ether-, and carbonyl groups in 
Erythrosin B could have played a determining role in the pH 
behaviour of adsorption. Low pH may be involved in the 
protonation of the nitrogen atoms of the biomass. Between 
these groups and atoms electrostatic attraction, van der 
Waals, dispersion forces, hydrogen bond, ion-dipole might 
have taken place. 

The surface charge of the adsorbent, 5.39, could be 
another important factor contributing to the efficiency of 
adsorption (Figure 4). This value could indicate that the sur-
face of the mould was positive at acidic pH as the hydro-
nium ions might have protonated all nitrogen atoms inside 
the biomass particles, resulting in a vertical increase of 
adsorption. 

3.4. Quantity of the adsorbent 

The effect of adsorbent quantity on the adsorption of 
Erythrosine B was studied between 30 and 250 mg and it 
was compared with those found in the literature (Table 1) 
(Figure 5). The maximum adsorption, 91.71%, was obtained 
with 100 mg adsorbent and Qe values decreased by increas-
ing the adsorbent amount. 

3.5. Modelling of adsorption process 

Experimental results were evaluated by using three kinetic 
models (Figure 6), and the related linear and non-linear iso-
therm parameters were presented (Table 2). The highest R2 

Figure 2. FT-IR spectra of Penicillium italicum before (a) and after (b) the biosorption of Erythrosine B.  

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 14215 



Figure 3. SEM-EDX analyses of Penicillium italicum before (a,b) and after (c,d) adsorption.  

Figure 4. pH dependency of the adsorption.  
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values  were better fitted to the Langmuir model (R2¼0.977), 
pointing to the occurrence of a monolayer adsorption. The 
maximum adsorption capacity (XL) and the Langmuir con-
stant (KL) values were found as 0.55 mol kg� 1 and 9898.622 L 
mol� 1, respectively. The adsorption capacity (XF) and surface 

heterogeneity of adsorbent (b) for Freundlich models were 
found to be 8.551 and 2.590 respectively and implied that 
reaction conditions were appropriate. The adsorption 
appeared to be physical because the adsorption energy (Ɛ) 
was approximately 10 kJ mol� 1. 

Table 1. Results from literature on biosorption of various dyes. 

Biosorbent used Dye 
Biosorption capacities (mg/g) or 

Removal efficiency (%) References  

Raphia hookeri Erythrosine B 87.78% (Okoye et al., 2019) 
Asperg€ullus niger Basic Blue 9 18.5 mg/g (Fu & Viraraghavan, 2000) 
Candida sp. Remazol Blue 169 mg/g (Aksu & D€onmez, 2003) 
Rhizopus arrhizus Erythrosine B 363.6 mg/g (Salvi, 2018) 
Spirulina platensi Congo Red 82.6% (Nautiyal et al., 2016) 
Penicillium italicum Erythrosine B 91.71% (Current study)  

Figure 5. Adsorbent dependency of adsorption.  

Figure 6. Experimental adsorption isotherms and their compatibility with the Langmuir-, Freundlich-, and D-R models.  

Table 2. Isotherm models parameters.  

Langmuir parameters R2 Freundlich parameters R2 D-R parameters R2  

Linear XL (mg g-1) 0.550   0.975 b 1.889   0.880 KDR (mol2kJ-2)�109 4.326   0.883  
KL (Lmg-1) 9985.279 XF 27.364 QDR (mol g-1) 2.173      

e kjmol-1 10.751 
Nonlinear XL (mg g-1) 0.551   0.977 b 2.590   0.941 KDR (mol2kJ-2)�109 5.000   0.909  

KL (Lmg-1) 9898.622 XF 8.551 QDR (mol g-1) 2.700      
e kjmol-1 10.000  
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3.6. Effect of incubation time 

Application of the PFO, PSO, and IPD models confirmed that 
the adsorption rate was expectedly faster at the beginning 
(Figure 7). The saturation plateau appeared between 480th 
min and 1440th min. R2 values were concordant with those 
of the PSO model and with the theoretical Qe (0.051) and 
experimental Qe (0.052) findings. The results of the IPD 

model argued that some Erythrosine B molecules might have 
penetrated into the adsorbent particles (Çetinkaya et al., 
2022). 

DH0 of the adsorption, 4.56 KJmol� 1 suggested an endo-
thermic, and the adsorption entropy, 86.86 Jmol� 1 K� 1, 
implied a random binding feature of Erythrosine B. The 
Gibbs free energy values were � 24.16 kJ mol� 1, � 25.89 kJ 

Figure 7. Compatibility of the adsorption kinetics with the PFO, PSO and IPD models.  

Table 3. Energetics of the adsorption. 

Temp KD DG0 DH0 DS0  

K LKg-1 KJmol-1 KJmol-1 Jmol-1K-1 

278.15 3443.58 � 24.16   4.56   86.86 
298.15 12549.48 � 25.89 
313.15 3635.47 � 27.20  

Average DG0 � 25.75    

Figure 8. The efficiency of recovery.  
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mol� 1, and � 27.20 kJ mol� 1 for 278.15, 298.15, and 313.15 K 

respectively, and their average value, � 25.75 kJ mol-1, indi-

cated a temperature dependent but spontaneous course of 

adsorption (Table 3). 

3.7. Desorption and recovery 

The desorption efficiency of the elution solutions used 
were NaOH> EtOH>HCl (Figure 8). After three 

adsorption/desorption cycles, the adsorbent still retained 
approximately 45% of its adsorption capacity. Electron micro-
graphs did not reveal significant topological adsorbent defor-
mations after the three repeats of desorption. 

3.8. Computational study 

Theoretical calculations compared the chemical and bio-
logical activities of the mould adsorbent. Many quantum 

Table 4. The calculated quantum chemical parameters of molecules. 

EHOMO ELUMO I A DE g l v P_I x e dipol Energy  

B3LYP/3-21g level 
� 0.9124   � 0.7007   0.912   0.7007   0.2117   0.1059   9.447   0.806   � 0.8066   3.0728   0.3254   4.1213   � 780941.7670 
B3LYP/STO-3G level 
1.8547   1.9494   � 1.854   � 1.9494   0.0947   0.0473   21.120   � 1.902   1.9021   38.205   0.0262   3.6186   � 776610.0340 
B3LYP/LANL2DZ level 
� 6.5175   � 2.1647   6.517   2.1647   4.3528   2.1764   0.459   4.341   � 4.3411   4.3294   0.2310   6.2374   � 32333.7328 
HF/3-21g level 
2.6809   3.1250   � 2.680   � 3.1250   0.4441   0.2220   4.503   � 2.902   2.9029   18.975   0.0527   4.4668   � 780461.0794 
HF/STO-3G level 
6.6372   6.6859   � 6.637   � 6.6859   0.0487   0.0244   41.060   � 6.661   6.6615   911.04   0.0011   3.4986   � 776199.6793 
HF/LANL2DZ level 
� 8.9298   1.3872   8.929   � 1.3872   10.3170   5.1585   0.193   3.771   � 3.7713   1.3785   0.7254   5.3550   � 32120.9852 
M062X/3-21g level 
� 0.0218   0.2664   0.021   � 0.2664   0.2882   0.1441   6.940   � 0.122   0.1223   0.0519   19.261   4.1020   � 780971.3880 
M062X/STO-3G level 
3.1677   3.3658   � 3.167   � 3.3658   0.1981   0.0991   10.095   � 3.266   3.2668   53.870   0.0186   3.6747   � 776639.0727 
M062X/LANL2DZ level 
� 7.7080   � 1.2444   7.708   1.2444   6.4636   3.2318   0.3094   4.476   � 4.4762   3.0999   0.3226   6.2814   � 32318.2090  

Figure 9. Optimized HOMO, LUMO, and ESP structures. Regions of high electron density were indicated in red.  

Figure 10. Presentation interactions of molecule with 2NC2.  
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chemical parameters and each of the quantum chemical 
parameters elucidated different properties of the adsorbent 
components. Two of the most important parameters, HOMO 
and LUMO, predicted the ability of molecules to donate and 
accept electrons (Bhat et al., 2022). Energy gap, DE, findings 
helped explain the energetics of the active adsorbent com-
ponents. The smallest difference between HOMO and LUMO 
energy values indicated the highest activity (Rezaeivala et al., 
2022). 

Apart from these parameters in Table 4, there are parame-
ters that explain many chemical properties of molecules. 
Electronegativity, as another significant parameter, measures 
the attraction strength of bond electrons by the adsorbent 
atoms. High electronegativity indicates high attraction 
strengths (Bhat et al., 2022). Chemical hardness and softness, 
on the other hand, provides information on the group 
reactivity and stability (Rezaeivala et al., 2022). Soft molecules 
are considered relatively more reactive as they can readily 
donate electrons. 

Although many parameters are calculated as a result of 
the calculations, only a few parameters are visualized. These 
images are given in Figure 9, in this way the optimized struc-
tures of the molecules include HOMO, LUMO, and the repre-
sentation of the electrostatic potentials of the molecules. 
Electrostatic potentials of molecules give information about 
electron density. Although the red colored regions are high 

in electron density, the blue colored regions are electron 
poor (Yalazan et al., 2022). 

After examining the DFT properties of molecules, it is 
important to compare the activity against biological materi-
als to achieve better and more reliable results. In the study, 
the most important of many factors affecting the results 
obtained against proteins to compare the activities of mole-
cules is the chemical interaction that occurs between 

Figure 11. Presentation interactions of molecule with 2NB0.  

Table 5. Numerical values of the docking parameters of molecule against 
proteins.  

2NC2 7U0N  

Docking score � 2.99 � 2.92 
Glide ligand efficiency � 0.10 � 0.10 
Glide hbond 0.00 � 0.47 
Glide evdw � 38.30 � 25.13 
Glide ecoul 2.24 � 10.67 
Glide emodel � 43.14 � 44.78 
Glide energy � 36.06 � 35.80 
Glide einternal 0.00 0.45 
Glide posenum 128 120  

Table 6. ADME properties of molecule. 

Parameters Erythrosine B Referance range  

mol_MW 836 130–725 
dipole (D) 6.3 1.0–12.5 
SASA 653 300–1000 
FOSA 0 0–750 
FISA 142 7–330 
PISA 227 0–450 
WPSA 285 0–175 
volume (A3) 1188 500–2000 
donorHB 2 0–6 
accptHB 5 2.0–20.0 
glob (Sphere ¼1) 0.8 0.75–0.95 
QPpolrz (A3) 42.3 13.0–70.0 
QPlogPC16 14.3 4.0–18.0 
QPlogPoct 21.6 8.0–35.0 
QPlogPw 11.3 4.0–45.0 
QPlogPo/w 4.9 � 2.0–6.5 
QPlogS � 7.2 � 6.5–0.5 
CIQPlogS � 15.6 � 6.5–0.5 
QPlogHERG � 5.4 �

QPPCaco (nm/sec) 451 ��

QPlogBB � 0.2 � 3.0–1.2 
QPPMDCK (nm/sec) 7574 ��

QPlogKp � 3.1 Kp in cm/hr 
IP (ev) 8.9 7.9–10.5 
EA (eV) 1.5 � 0.9–1.7 
#metab 2 1–8 
QPlogKhsa 0.7 � 1.5–1.5 
Human Oral Absorption 1 – 
Percent Human Oral Absorption 90 ���

PSA 88 7–200 
RuleOfFive 1 Maximum is 4 
RuleOfThree 1 Maximum is 3 
Jm 0.00004 -  

Note: �below -5, ��<25 is poor and >500 is great, ��� <25% is poor and 
>80% is high.
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proteins and molecules. These chemical interactions that 
occur are shown in Figures 10–11. 

Molecular docking results (Table 5) indicated interactions 
between the protein molecules of the biomaterial (Glide 
hbond, Glide evdw, and Glide ecoul) (Kafa et al., 2022), while 
the remaining parameters showed the chemical interactions 
occurred between proteins and other molecules (Glide emo-
del, Glide energy, Glide einternal, and Glide posenum) 
(Taslimi et al., 2022). 

ADME/T evaluated the potential toxicity of the biomaterial 
(Table 6). This analysis made use of the molar mass (mol_ 
MW), dipole moment (dipole), total solvent accessible surface 
area (SASA), (v/v), number of hydrogens (donorHB and 
accptHB), globularity descriptor (glob), and predicted polariz-
ability (QPpolrz) values (Poustforoosh et al., 2022). In add-
ition, IC50 value for blockage of HERG Kþ channels 
(QPlogHERG), apparent Caco-2 cell permeability (QPPCaco), 
and brain/blood partition coefficient (QPlogBB) were pre-
dicted (Tokalı et al., 2022). 

4. Conclusions 

The initial pH (2.0) of the medium significantly affected the 
sorption capacity of dry moulds. The adsorption results indi-
cated that a monolayer adsorption had occurred and these 
were in agreement with the Langmuir model. Experimental 
data were also proven to be compatible with the PSO 
model. 

The presence of Erythrosine B molecules on the adsorbent 
was confirmed by FT-IR and SEM analyses. These two 
approaches clearly indicated that the surface of the cells was 
covered with dye molecules. In addition, the data obtained 
from the EDX were also consistent with these results. These 
results together showed that dry mould could retain textile 
dyes at meaningful ratios. 
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