APPLIED COMPUTER-AIDED DRUG DESIGN: MODELS AND METHODS

Editor: Igor José dos Santos Nascimento

Bentham Books

Applied Computer-Aided Drug Design: Models and Methods For Personal privated to Not be distributed or uploaded to For personal private use only.

Edited by Igor José dos Santos Nascimento

Programa de Pós-Graduação em Ciências Farmacêuticas Not be distributed or Universidade Estadual da Paraíba Campina Grande DD armá مسلط Estadual da Pa Campina Grande-PB Brazil Not be distributed or uploaded to anyone or anywhere. Not be distributed or upload

ded to anyone or anywhere. er-A: anal private use only. Applied Computer-Aided Drug Design: Models and Methods Editor: Igor José dos Santos Nasciment Editor: Igor José dos Santos Nascimento ISBN (Online): 978-001

ی 2023, Bentham Books imprint. Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved. First published in 2023, ,us Pte Not be distributed or uploade

First published in 2023. Not be distributed or uploaded to anyone or anywhere.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

2. Your rights under this License Agreement will automatically terminate without notice and without the

one or anywhere. need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail. Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 060000

Singapore Email: subscriptions@benthamscience.net For personal private use only. Not be distributed or uploaded to anyone or an Not be distributed or uploa

CONTENTS

CONTENTS PREFACE REFERENCES LIST OF CONTRIBUTORS	
ouly. or survey	
te use ione or	
CONTENTS	
PREFACE	
REFERENCES	
LIST OF CONTRIBUTORS	iii
CHAPTER 1 LIGAND AND STRUCTURE-BASED DRUG DESIGN (LBDD AND SBDD):	
PROMISING APPROACHES TO DISCOVER NEW DRUGS	1
Igor José dos Santos Nascimento and Ricardo Olimpio de Moura	
INTRODUCTION	2
DRUG DESIGN AND DISCOVERY: PAST AND TODAY METHODS AND OTHER APPROACHES	2
APPROACHES	
Synthetic Drugs: Classical Approaches	
Bioisosterism	4
Molecular Simplification	
Molecular Hybridization	
Combinatorial Chemistry	
High Throughput Screening (HTS) Target-Based Drug Discovery (TBDD)	8
Phenotypic-Based Drug Discovery (PBDD)	
Multitarget Drug Design (MDD)	10
Computer-Aided Drug Design (CADD)	
SBDD AND LBDD METHODS IN DRUG DESIGN	11
Structure-Based Drug Design (SBDD)	11
Homology Modeling	
Molecular Docking and Molecular Dynamics Simulations	
Fragment-Based Drug Design (FBDD) or de novo Drug Design Density Function Theory (DFT)	
Ligand-Based Drug Design (LBDD)	
Quantitative Structure-Activity Relationship (QSAR)	
Pharmacophore Modeling	
Machine and Deep Learning and Artificial Methods	
CHALLENGES AND OPPORTUNITIES IN LBDD AND SBDD APPROACHES TO	
DESIGN AND DISCOVER NEW DRUGS CONCLUSION ACKNOWLEDGMENTS REFERENCES	
CUNCLUSION	22
ACKNOWLEDGMENTS	23
REFERENCES	
CHAPTER 2 QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP (QSAR) IN STUDYING THE BIOLOGICALLY ACTIVE MOLECULES	
STUDYING THE BIOLOGICALLY ACTIVE MOLECULES	
Serap CETINKAYA, Burak TÜZÜN and Emin SARIPINAR INTRODUCTION	33 - 303
OSAR's Use	
QSAR Model Development	36
2D-QSAR Analysis	37
Fragment-Based 2D-QSAR Methods	38
3D-QSAR	39
4D-QSAR	40
5D- and 6D-QSAKS	40
QSAR Model Development 2D-QSAR Analysis Fragment-Based 2D-QSAR Methods 3D-QSAR 4D-QSAR 5D- and 6D-QSARs Molecular Modelling and QSAR Importance of the Validation of QSAR Models	41
aller and a glasses aller	Ce Olini or Sini
tot be sor point upic	e use ione
Not Fored or stillar	any
3D-QSAR 4D-QSAR 5D- and 6D-QSARs Molecular Modelling and QSAR Importance of the Validation of QSAR Models Models	
disting	
the ar pers uploa	
Nor Eor 4 or or	
: nuter	

	ans of Proof for QSAR Models		
Ме	ans of Proof for QSAR Models	<u></u>	41
Int			42
	ernal Validation		
	producible QSAR Protocol		
	N		
	101, 740		
HAPTER 5 PHA RUG DESIGN AN	RMACOPHORE MAPPING: AN IMPORT D DISCOVERY	ANI TOOL IN MODERN	57
	athak, Abha Vyas, Sneha R. Sagar, Hardik G. I		57
INTRODUCT	ION	W/NE,	58
	ns of Pharmacophore		
Pharmac	pphore: History	.0/	59
LICAND BAS	phoric Features	~*B.	61 64
	ased Pharmacophore Modeling		
istriv Sel	ection of the Right Set of Compounds and their	Initial Structure	66
Co	nformational Search		66
CIFE	nture Representation and Extraction		
	ttern Identification/Molecular Alignment		
	pring the Common Pharmacophore		
Pharmac	phore Validation		
Pharmaco Co	st Analysis		77
Fis	her's Randomization Test		
	t Set Prediction		
	ive-one-out Method		
Pharmac	ophore Based 3D QSAR	<u>6 05 - 1006 - </u>	
	BASED PHARMACOPHORE		
	Based Pharmacophore Model Generation		
	ive Site Identification		
	mplementary Image Construction		81
	ery Generation, Searching and Hit Analysis lidation		
	tual Screening		91
	filtering		91
APPLICATIO	N OF PHARMACOPHORE MAPPING	<u>ne</u>	94
	sful Example of Pharmacophore-based Drug E		
	amide Derivatives Were Successfully Shown t		ors
	ons of Artificial Intelligence in Pharmacophore		
	ns of Pharmacophore Modeling		102
CONCLUSIO	N 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mrs. Ship	103
ACKNOWLE	DGEMENTS	$\frac{1}{2}$	103
REFERENCE	DGEMENTS S O-DATE DEVELOPMENTS IN HOMOLO ahun Muhammed and Esin Aki-Yalcin ION	5011,020,000	103
HAPTER 4 UP-1	O-DATE DEVELOPMENTS IN HOMOLO	OGY MODELING	116
Muhammed Til	ahun Muhammed and Esin Aki-Yalcin		antia
IN I KODUCT BRIFF HISTA	IUN NRV OF HOMOLOGY MODELING	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	117 118
DRIEF HISIC	AT OF HOMOLOGT MODELING	~1501,15, ~200%	110 00
	ION DRY OF HOMOLOGY MODELING	Personal private ted or uploaded For personal private ributed or uploaded	a USE
	Nor For		is anyo
		al prive	100
		- gona adel	
		Ear per lipio	

HOMOLOGY MODELING PROCEDURE 18 Hentification and Selection of templates 19 Sequence Alignments and Alignment Correction 190 Luop Modeling 100 Side Chain Modeling 100 Side Chain Modeling 101 Model Optimization 121 Model Distribution and Validation 123 Pinne 124 Physica 124 ASS STUDY 124 ASS STUDY 124 MODELLENCE 124 ASS STUDY 124 MODELING NO F HOMOLOCY MODELING IN BRUG DISCOVERY 125 APPIACATIONS OF HOMOLOCY MODELING IN BRUG DISCOVERY 126 Conventer Ba ANTICANCER ACTIVITY OF MEDICINAL PLANIS EXTERCION 126 MODELING NO CHANG STUDIES <t< th=""><th>were.</th><th></th></t<>	were.	
Sequence Alignment Sand Alignment Correction 119 Model Building 120 Side-Chain Modeling 121 Model Dytimization 121 Model Dytimization 121 Model Dytimization 121 OVERVIEW OF HOMOLOGY MODELING TOOLS 121 MODELLER 123 Prime 123 Prime 123 Phyre2 123 HHPRED 124 RosetticM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER'S ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES 136 Sorap CETINKATA and Burak TUZUN 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 138 Structure (Receptor)-based Approach 139 Conduct Nide True One Structure Algorithm 141 Flexible Docking 141 Flexible Docking 141 <td< th=""><th>anty anywrite</th><th></th></td<>	anty anywrite	
Sequence Alignments and Alignment Correction 119 Model Building 120 Side Chain Modeling 121 Model Optimization 121 Model Optimization 121 Model Optimization 121 Model Parlation and Validation 121 OVERVIEW OF HOMOLOGY MODELING TOOLS 121 MODELLER 122 LTASSER 122 SWISS-MODEL 123 Prime 123 Printe 123 Phyte2 124 RosettaCM 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFFERENCES 129 CHAPTERS 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND 136 Serap CETINKAYA and Barek TUZUN 136 Serap CETINKAYA and Barek TUZUN 136 Serap CETINKAYA and Barek TUZUN 136 Suracture (Receptor)-based Approach 138 Structure (Receptor)-based Approach 138 Ovalent Interactions in Biological Systems 139 Molecular Dock	USE OF ALL	
Sequence Alignments and Alignment Correction 119 Model Building 120 Side-Chain Modeling 121 Model Optimization 121 Model Optimization 121 Model Optimization 121 Model Control Alidation 121 OVERVIEW OF HOMOLOCY MODELING TOOLS 121 MODELLER 123 Prime 123 Physe2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTERS ANTICANCER ACTIVITY OF MEDICINAL PLANUS EXTRACT AND MOLECULAR DOCKING STUDIES 136 Serar CETINKAMA and Burak TOZON 136 NOLECULAR DOCKING STUDIES 136 Serar CETINKAMA and Burak TOZON 136 Structure (Receptor)-based Approach 138 Structure (Receptor)-based Approach 138 Structure (Receptor)-based Approach 138 Structure (Receptor)-based Approach <td>HOMOLOGY MODELING PROCEDURE</td> <td></td>	HOMOLOGY MODELING PROCEDURE	
Sequence Alignments and Alignment Correction 119 Model Building 120 Side-Chain Modeling 121 Model Optimization 121 Model Optimization 121 OVERVIEW OF HOMOLOGY MODELING TOOLS 121 MODELLER 122 FTASSER 122 SWISS-MODEL 123 Prime 123 Prime 123 Phyre2 123 HIPRED 124 RASE STORE 124 CASE STUDY 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTERS ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES 136 Serge CETINKAYA and Buwak TUZUN INTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 138 Structure (Receptor)-based Approach 139 Covalent Interactions in Biological Systems <td>Identification and Selection of templates</td> <td></td>	Identification and Selection of templates	
ITASSER 122 SWISS-MODEL 123 Prime 123 Phyre2 123 HIPPED 124 RosetaCM 124 Alpha Fold 124 Alpha Fold 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES MOLECULAR DOCKING STUDIES 136 Serag CETINKAM and Burak TUZUN 136 Structure (Receptor)-based Approach 138 Structure (Receptor)-based Approach 139 Molecular Docking Non-Covalent and Covalent Docking 140 Docking Methods in Software 140 Flexible-Freed Docking 141 Flexible-Docking 141 Flexible-Docking 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Cooking Calculations Algorithm 141 Shape Matching Algorithm	Sequence Alignments and Alignment Correction	
ITASSER 122 SWISS-MODEL 123 Prime 123 Phyre2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES MOLECULAR DOCKING STUDIES 136 Serag CETINKAIA and Burak TÜZÜN 136 NTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Molecular Docking 141 Flexible-Fried Docking 141 Flexible-Fried Docking 141 Flexible-Docking 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Shape Matching Algorithm<	Model Building	
ITASSER 122 SWISS-MODEL 123 Prime 123 Phyre2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES MOLECULAR DOCKING STUDIES 136 Serag CETINKAIA and Burak TÜZÜN 136 NTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Molecular Docking 141 Flexible-Fried Docking 141 Flexible-Fried Docking 141 Flexible-Docking 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Shape Matching Algorithm<	Side-Chain Modeling	120
ITASSER 122 SWISS-MODEL 123 Prime 123 Phyre2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES MOLECULAR DOCKING STUDIES 136 Serag CETINKAIA and Burak TÜZÜN 136 NTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Molecular Docking 141 Flexible-Fried Docking 141 Flexible-Fried Docking 141 Flexible-Docking 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Shape Matching Algorithm<	Model Optimization	
ITASSER 122 SWISS-MODEL 123 Prime 123 Phyre2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES MOLECULAR DOCKING STUDIES 136 Serag CETINKAIA and Burak TÜZÜN 136 NTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Molecular Docking 141 Flexible-Fried Docking 141 Flexible-Fried Docking 141 Flexible-Docking 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Shape Matching Algorithm<	Model Evaluation and Validation	121
ITASSER 122 SWISS-MODEL 123 Prime 123 Phyre2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES MOLECULAR DOCKING STUDIES 136 Serag CETINKAIA and Burak TÜZÜN 136 NTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Molecular Docking 141 Flexible-Fried Docking 141 Flexible-Fried Docking 141 Flexible-Docking 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Stepwise Structure Algorithm 141 Shape Matching Algorithm<	OVERVIEW OF HOMOLOGY MODELING TOOLS	
SWISS-MODEL 123 Prime 123 Phyre2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES 136 Serap (ETINKAYA and Burak TUZIN INTRODUCTION 136 Coordent Arided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Ocvalent Interactions in Biological Systems 139 Molecular Docking: Non-Covalent and Covalent Docking 140 Piexide Drocking 141 Flexidie Docking 141 Flexidie Docking 141 Flexidie Docking 141 Flexidie Carlo Sampling Algorithm 141 Genetic Algorithm 141 Genetic Algorithm 141 Monecular Docking Software 142	MODELEEK	
Prime 123 Phyre2 123 HHPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND 136 MOLECULAR DOCKING STUDIES 136 Serap CFUNKAIYA and Burak TUZUN 137 INTRODUCTION 136 Computer Aided Approach 139 Covalent Interactions in Biological Systems 139 Molecular Docking 140 Picetible Tixed Docking 141 Flexible - Tixed Docking 141 Flexible Docking 141 Structure Algorithm 141 Genetic Algorithm 141 Genetic Algorithm 141 Molecular Docking Coving 141 Molecular Docking Coving 141 King Coving Calculations Algorithms 141 Molecular Docking Coving 141 ShapeWatching Algorithm 142		
HiPRED 124 RosettaCM 124 Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND 136 Serap (ETINKAYA and Burak TUZUN 136 INTRODUCTION 136 Structure (Receptor)-based Approach 138 Structure (Receptor)-based Approach 139 Molecular Docking: Non-Covalent and Covalent Docking 140 Pixed Docking 141 Flexible-Fixed Docking 141 Flexible-Fixed Docking 141 Structure (Reciptor)-based Approach 141 Flexible-Fixed Docking 141 Flexible-Fixed Docking 141 Flexible-Fixed Docking 141 Flexible-Fixed Docking 141 Molecular Docking Calculations Algorithms 141 Molecular Docking Calculations Algorithm 141 Stepsize Structure Algorithm 142 Biplane Space Sampling Algorithm 142 Biplane Spac	disting reaction of the second se	123
RosettaCM124Alpha Fold125APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY127CONCLUSION128REFERENCES129CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT ANDMOLECULAR DOCKING STUDIES136Serap CETINKAI/A and Burak TÜZÜN136Computer Aided Drug Design (CADD)137Ligand-based Approach138Structure (Receptor)-based Approach139Molecular Docking: Non-Covalent and Covalent Docking140Fixed Docking141Fixed Docking141Fixed Docking141Fixed Docking141Structure Algorithm141Mone Carlo Sampling Algorithm141Mone Carlo Sampling Algorithm141Mone Carlo Sampling Algorithm141Mone Carlo Sampling Algorithm142Biplane Space Sampling142Molecular Docking Software142Mone Carlo Sampling Algorithm141Mone Carlo Sampling Algorithm142Mone Carlo Sampling Algorithm142Molecular Docking Software142Molecular Docking Software		
Alpha Fold 124 CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND 136 Serap CETINKAYA and Burak TÜZÜN 136 INTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 139 Covalent Interactions in Biological Systems 139 Molecular Docking: Non-Covalent and Covalent Docking 140 Fixeible Docking 141 Flexible Docking 141 Structure Algorithm 141 Structure Algorithm 141 Mone Carlo Sampling Algorithms 141 Mone Carlo Sampling Algorithm 141 Mone Carlo Sampling Algorithm 142 Biplane Space Sampling 142 Biplane Socies Software 142 Molecular Docking Software 142 Molecular Docking Software 142 Molecular Docking Software 141 Mone Carlo Sampling Algorithm 141 Molecular D		
CASE STUDY 125 APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND 136 MOLECULAR DOCKING STUDIES 136 Serap CETINKAYA and Burak TÜZÜN 136 INTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Covalent Interactions in Biological Systems 139 Ocoking Methods in Software 140 Pixed Docking 141 Flexible-Fixed Docking 141 Flexible-Fixed Docking 141 Genetic Algorithm 141 Stepwise Structure Algorithm 141 Genetic Algorithm 141 Genetic Algorithm 141 Genetic Algorithm 141 Genetic Algorithm 141 Molecular Docking Calculations Algorithm 142 Biplane Space Sampling 142 Stepwise Structure Algorithm 141 Genetic Algorithm 142		
APPLICATIONS OF HOMOLOGY MODELING IN DRUG DISCOVERY 127 CONCLUSION 128 REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND 136 Serap CETINKAYA and Burak TÜZÜN 136 INTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 139 Covalent Interactions in Biological Systems 139 Molecular Docking: Non-Covalent and Covalent Docking 140 Filexible-Fixed Docking 141 Flexible-Fixed Docking 141 Flexible-Docking 141 Genetic Algorithm 142 Biplane Space Sampling Algorithm 142 Biplane Space Sampling Algorithm 142 Molecular Docking Software 142 Artemisia sieversiana 143 Katomarching Algorithm		
REFERENCES 129 CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND 136 MOLECULAR DOCKING STUDIES 136 Serap (ETINKAYA and Burak TÜZÜN 136 INTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Covalent Interactions in Biological Systems 139 Molecular Docking: Non-Covalent and Covalent Docking 140 Fixed Docking 141 Flexible - Fixed Docking 141 Flexible Docking 141 Flexible Docking 141 Types of Docking Calculations Algorithms 141 Mone Carlo Sampling Algorithm 141 Mone Carlo Sampling Algorithm 141 Mone Carlo Sampling Algorithm 141 Molecular Docking Genetic Algorithm 142 Biplane Space Sampling 142 Shape Matching Algorithm 142 Molecular Docking Software 142 Artemisia sieversiana 145 Rosmarinus officinalis 147 Allium sativum 148		
CHAPTER 5 ANTICANCER ACTIVITY OF MEDICINAL PLANTS EXTRACT AND MOLECULAR DOCKING STUDIES 136 Serap (ETINKAYA and Burak TÜZÜN INTRODUCTION Ide document to the second		
MOLECULAR DOCKING STUDIES 136 Serap CETINKAYA and Burak TÜZÜN 136 INTRODUCTION 136 Computer Aided Drug Design (CADD) 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Covalent Interactions in Biological Systems 139 Molecular Docking; Non-Covalent and Covalent Docking 140 Docking Methods in Software 140 Fixed Docking 141 Flexible-Fixed Docking 141 Flexible Docking 141 Stepwise Structure Algorithms 141 Monte Carlo Sampling Algorithm 141 Monte Carlo Sampling Algorithm 141 Lamarckian Genetic Algorithm 142 Biplane Space Sampling 142 Molecular Docking Software 142 Molecular Docking Software 142 Molecular Docking Software 142 Molecular Docking Software 142 Biplane Space Sampling 142 Molecular Docking Software 142 Molecular Docking Software 143 Molecular Docking Software 144	REFERENCES	
Serap ÇETINKAYA and Burak TÜZÜN 136 INTRODUCTION 137 Ligand-based Approach 137 Ligand-based Approach 138 Structure (Receptor)-based Approach 139 Covalent Interactions in Biological Systems 139 Molecular Docking: Non-Covalent and Covalent Docking 140 Docking Methods in Software 140 Fixed Docking 141 Flexible-Fixed Docking 141 Flexible Docking 141 Stepwise Structure Algorithms 141 Monte Carlo Sampling Algorithm 141 Genetic Algorithm 141 Monte Carlo Sampling 142 Biplane Space Sampling 142 Molecular Docking Software 142 Artemisia sieversiana 145 Rosmarinus officinalis 147 Allium sativum 148		
INTRODUCTION136Computer Aided Drug Design (CADD)137Ligand-based Approach138Structure (Receptor)-based Approach139Covalent Interactions in Biological Systems139Molecular Docking; Non-Covalent and Covalent Docking140Docking Methods in Software140Fixed Docking141Flexible-Fixed Docking141Flexible-Docking141Stepwise Structure Algorithms141Monte Carlo Sampling Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Software142Ariemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Computer Aided Drug Design (CADD)137Ligand-based Approach138Structure (Receptor)-based Approach139Covalent Interactions in Biological Systems139Molecular Docking: Non-Covalent and Covalent Docking140Docking Methods in Software140Fixed Docking141Flexible-Fixed Docking141Flexible-Fixed Docking141Stepwise Structure Algorithms141Monte Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Molecular Docking Software142Artemisia sieversiana143Rosmarinus officinalis147Allium sativum148	Serap CETINKAYA and Burak TUZUN	136
Ligand-based Approach138Structure (Receptor)-based Approach139Covalent Interactions in Biological Systems139Molecular Docking: Non-Covalent and Covalent Docking140Docking Methods in Software140Fixed Docking141Flexible-Fixed Docking141Flexible-Fixed Docking141Types of Docking Calculations Algorithms141Stepwise Structure Algorithm141Monte Carlo Sampling Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Molecular Docking Software142Molecular Docking Software142Molecular Software142Molecular Docking Software142Molecular Docking Software142Molecular Docking Software142Molecular Docking Software143Rosmarinus officinalis147Allium sativum148		
Covalent Interactions in Biological Systems139Molecular Docking: Non-Covalent and Covalent Docking140Docking Methods in Software140Fixed Docking141Flexible-Fixed Docking141Flexible Docking141Types of Docking Calculations Algorithms141Stepwise Structure Algorithm141Mone Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemista sieversiana145Rosmarinus officinalis147Allium sativum148		
Molecular Docking: Non-Covalent and Covalent Docking140Docking Methods in Software140Fixed Docking141Flexible-Fixed Docking141Flexible-Fixed Docking141Types of Docking Calculations Algorithms141Stepwise Structure Algorithm141Monte Carlo Sampling Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Docking Methods in Software140Fixed Docking141Flexible-Fixed Docking141Flexible Docking141Types of Docking Calculations Algorithms141Stepwise Structure Algorithm141Monte Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Fixed Docking141Flexible-Fixed Docking141Flexible Docking141Types of Docking Calculations Algorithms141Stepwise Structure Algorithm141Monte Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Flexible-Fixed Docking141Flexible Docking141Types of Docking Calculations Algorithms141Stepwise Structure Algorithm141Monte Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Monte Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148	Flexible-Fixed Docking	
Monte Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Monte Carlo Sampling Algorithm141Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Genetic Algorithm141Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148		
Lamarckian Genetic Algorithm142Biplane Space Sampling142Shape Matching Algorithm142Molecular Docking Software142Artemisia sieversiana145Rosmarinus officinalis147Allium sativum148	Constic Algorithm	$\sim 0 $ 141
	Lamarckian Genetic Algorithm	
	Biplane Space Sampling	
	Shape Matching Algorithm	
	Artemisia sieversiana	142
	Rosmarinus officinalis	
Zingiber officinale	Allium sativum	148
REFERENCES	Zingiber officinale	
REFERENCES	REFERENCES	151
	REFERENCES	
	Anwesna Das, Ariju Manai, vijeta Kumari and Mallika Alvala	ouly. " Su
Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala	be u. pers uploa	USE THE O'
Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala	Nor Foild of an	
Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala	inuted al pri	1 10 01
Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala	distric	Jen
Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Aivala	the unit of the state of the st	
Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala	Nor For doror	
Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala	thuteu	
REFERENCES 151 CHAPTER 6 FBDD & DE NOVO DRUG DESIGN 159 Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala 159		
Zingtber officinale 149 CONCLUSION 151 REFERENCES 151 CHAPTER 6 FBDD & DE NOVO DRUG DESIGN 159 Anwesha Das, Arijit Nandi, Vijeta Kumari and Mallika Alvala 159		

Se US IONE	
INTRODUCTION	160
TYPES OF DRUG DESIGN	161
Structure or Receptor-based Drug Design (SBDD)	
Ligand-based Drug Design (LBDD)	
Sampling Methods in De novo Drug Design (DNDD)	
EVOLUTIONARY ALGORITHMS IN DNDD	
ARTIFICIAL INTELLIGENCE (AI) IN DNDD	
DEEP REINFORCEMENT LEARNING (DRL) IN DNDD	
Recurrent Neural Networks (RNN)	165
Convolutional Neural Network (CNN)	
Generative Adversarial Network (GAN)	168
Autoencoder (AE)	168
Variational Autoencoder (VAE)	168
Sequence-to-Sequence Autoencoder (seq2seq AE)	
Adversarial Autoencoder (AAE)	
PARTICLE SWARM OPTIMIZATION (PSO) FOR DNDD	
PARAMETERS OF EVALUATION	
Diversity and Novelty	
Diversity and Descention	1/1
Desired Properties	1/2
Synthetic Feasibility	
BRIDGING TOXICOGENOMICS AND MOLECULAR DESIGN	
DNDD FOR COVID-19	174
BUILDING COMMUNITY AND REGULATORY ACCEPTANCE OF DL-METHOD	
FOR DNDD	175
FBDD	175
Fragment Libraries	175
Fragment Expansion Strategy	176
Fragment Optimization Strategy	
Fragment Growing	
Fragment Linking	
Fragment Merging	
In silico Strategies for Fragment-to-ligand Optimization	
Hotspot Analysis and Pocket Druggability Prediction	
SAR Catalogue	
Molecular Docking	182
Machine Learning and Deep Learning	182
DNDD	
Novel Molecules Generating Software for The Binding Pocket of Protein's Binding	g
Site	
Pharmacokinetic Property Prediction of The Novel Compounds	186
Prediction of Synthesizability with The Novel Compounds	186
Synthesizability-aware Methods	186
Case Studies	
PROTAC AND MOLECULAR GLUE	186
CONCLUSION	188
REFERENCES	188
AISU	Indiana Suit
CHAPTER 7 MOLECULAR SIMULATION IN DRUG DESIGN: AN OVERVIEW OF	
MOLECULAR DYNAMICS METHODS	202
Fernando D. Prieto-Martínez, Yelzyn Galván-Ciprés and Blanca Colín-Lozano	SUA
INTRODUCTION	202
INTRODUCTION	OUR. SUR
PROTAC AND MOLECULAR GLUE CONCLUSION REFERENCES CHAPTER 7 MOLECULAR SIMULATION IN DRUG DESIGN: AN OVERVIEW OF MOLECULAR DYNAMICS METHODS Fernando D. Prieto-Martínez, Yelzyn Galván-Ciprés and Blanca Colín-Lozano INTRODUCTION	
NOT DE EORP. OR UP	
No red or arive	and sur
cibulo al pri	
REFERENCES CHAPTER 7 MOLECULAR SIMULATION IN DRUG DESIGN: AN OVERVIEW OF MOLECULAR DYNAMICS METHODS Fernando D. Prieto-Martínez, Yelzyn Galván-Ciprés and Blanca Colín-Lozano INTRODUCTION	
NOT POR COLAR OF	
No. Kondoi	

Historical Background THEORETICAL INTERLUDE The Basics: Generating Equations of Motion Breaking Molecular Interactions Down to Physical Contributions: Enter Molecular Force	
oll anywho	
USE OF ALL	
Historical Background	205
THEORETICAL INTERLUDE	
The Basics: Generating Equations of Motion	
Breaking Molecular Interactions Down to Physical Contributions: Enter Molecular Force	
of Field	. 210
A Primer on Thermodynamics and Statistical Mechanics	
THE OVERARCHING PROBLEM: SAMPLING	
CURRENT LIMITATIONS OF MOLECULAR DYNAMICS	
MOLECULAR DYNAMICS PRACTICE AT A GLANCE Prior to Simulation	
First Steps	. 220
Commonly Used Force Fields	. 221
Available Software	. 222
Desmond	. 224
GROMACS	. 224
NAMD OpenMM	
OpenMM YASARA Building the System Bunning a MD Simulation	
Building the System	
Running a MD Simulation	. 228
Simulation Analysis	. 232
RALTEGRAVIR: A CASE STUDY	
A Look into the HIV-1 Integrase	. 234
The Drug Discovery Process The Development of Raltegravir	236
WORKING EXAMPLE: MOLECULAR DYNAMICS TUTORIAL USING DESMOND	
Generalities	
Making an Atomistic Simulation of Crambin	. 241
Setting Up the System	. 242
Building the Simulation Box	. 243
Reparametrization Using the AMBER99SB-ILDN Force Field	
Initializing the Simulation Protocol: Minimization Equilibration and Dynamics	. 244
Trajectory Analysis	245
Analysis with MDTraj	. 245 . 246
CONCLUSION	. 248
ACKNOWLEDGEMENTS	. 212
REFERENCES	249
CHAPTER 8 QUANTUM CHEMISTRY IN DRUG DESIGN: DENSITY FUNCTION THEORY (DFT) AND OTHER QUANTUM MECHANICS (QM)-RELATED APPROACHES	258 259 261
Samuel Baraque de Freitas Rodrigues, Rodrigo Santos Aquino de Araújo, Thayane Regine Dantas de Mendonça, Francisco Jaime Bezerra Mendonça-Júnior, Peng Zhan and Edeildo Ferreira da Silva-Júnior INTRODUCTION TO THE HISTORY OF OUANTUM CHEMISTRY (OC)	UN. SUN
and Edeildo Ferreira da Silva-Júnior	
INTRODUCTION TO THE HISTORY OF QUANTUM CHEMISTRY (QC)	. 259
HOHENBERG-KOHN-SHAM THEOREM – DENSITY FUNCTIONAL THEORY (DFT)	259 261 263 264 264 264
Hohenberg-Kohn Existence Theorem	263
Hohenberg-Kohn Variational Theorem	3 264
Kohn-Sham Self-Consistent Field Methodology	. 264
CHEMICAL REACTIVITY INDEXES BY DENSITY FUNCTIONAL THEORY (DFT)	265
Chemical Folential and Electronegativity	. 203 nly any
Ne dist nerso noau	use of a
NOT DE FORPE OT UP	
Hohenberg-Kohn Variational Theorem Kohn-Sham Self-Consistent Field Methodology	*O SILI
nal Pided	
dis" alls"	
a lot be	
No. Lorod O.	

Fukui Functions	266
Fukui Functions	
DENSITY FUNCTIONAL THEORY (DFT)-RELATED APPROACHES	
Hybrid Method: Quantum Mechanics / Molecular Mechanics (QM/MM) DFT CALCULATIONS IN DRUG DESIGN & DEVELOPMENT Drug-Target Interactions	
DFT CALCULATIONS IN DRUG DESIGN & DEVELOPMENT	268
Drug-Target Interactions	268
Drug-Target Interactions <i>GABAA Receptor Inhibition</i> Understand Enzymatic Mechanisms of Catalysis	272
Understand Enzymetic Machanisms of Catalyzia	272
	273
	274
GABAA Receptor Inhibition Understand Enzymatic Mechanisms of Catalysis Cytidine Deaminase RNA-dependent RNA Polymerase (RdRp) in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Oxidized Polyvinyl Alcohol Hydrolase (OPH) from Pseudomonas O-3 Strain Polyethylene Terephthalate Hydrolase (PETase) from Ideonella Sakaiensis Exploring Catalytic Reactions of Cysteine Protease (Papain-like Proteins)	
Oxidized Polyvinyl Alcohol Hydrolase (OPH) from Pseudomonas O-3 Strain	276
Polyothylana Taraphthalata Hydrolasa (PFTasa) from Ideonalla Sakajansis	277
Europeing Cotaletic Desctions of Containe Distance (Densin like Distaine)	270
Papain Protease	
Falcipain-2 from Plasmodium Falciparum	
Cruzain Protease from Trypanosoma cruzi, and Rhodesain from T. brucei Main Protease (Mpro or 3CLpro) from Severe Acute Respiratory Syndrome	282
Coronavirus 2 (SARS-CoV-2)	286
METALLOPROTEASES	
Iron(III)-Catalyzed Aerobic Degradation by Biphenyl 2,3-dioxygenase (BphA)	
Muchroom Conner Containing Tyradinase	202
Mushroom Copper-Containing Tyrosinase	292
[NiFe] Hydrogenase from Desulfovibrio Gigas	293
QUANTUM CHEMICAL (QC) METHODS AND THEIR USES FOR DESIGNING	
DRUGS - VIEWPOINT AND COMPUTER REQUIRE- MENTS	
CONCLUSION	
LIST OF ABBREVIATIONS	
ACKNOWLEDGMENTS	299
REFERENCES	310 310 313
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND D PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments	310 310 313 315 321 324 325
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices	310 310 313 315 321 324 325 326 327
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices	310 310 313 315 321 324 325 326 327
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C	310 310 313 315 321 324 325 326 327 330
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C	310 310 313 315 321 324 325 326 327 330
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C	310 310 313 315 321 324 325 326 327 330
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C	310 310 313 315 321 324 325 326 327 330
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C	310 310 313 315 321 324 325 326 327 330
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C	310 310 313 315 321 324 325 326 327 330
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martinez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices BOCEPREVIR AS A CASE STUDY: A RELEVANT ANTIVIRAL FOR THE TREATMENT OF HEP C CONCLUSION ACKNOWLEDGEMENTS REFERENCES JECT INDEX	310 310 313 315 321 324 325 326 327 330 332 334 568
APTER 9 FREE ENERGY ESTIMATION FOR DRUG DISCOVERY: BACKGROUND PERSPECTIVES Fernando D. Prieto-Martínez and Yelzyn Galván-Ciprés INTRODUCTION THEORETICAL BACKGROUND End-point Methods FREE ENERGY PERTURBATION THEORY METADYNAMICS Software and Workflows Current Developments Best Practices	310 310 313 315 321 324 325 326 327 330 332 334 568

PREFACE mere

frug discoverial cost The drug discovery and development process is time-consuming and demands a high financial cost. In this way, it is estimated to take approximately 10 to 17 years, costing around 4 billion dollars. This stimulates the advancement of new methodologies that can accelerate the discovery process and increase the probability of a promising molecule. In addition, constant developments in informatics and computations have led to the routine use of highperformance computing in medicinal chemistry. Thus, Computer-Aided Drug Design (CADD) methods emerge, capable of providing critical information for the design of new molecules, essential in any new drug discovery program [1, 2].

In this context, the book "Applied Computer-Aided Drug Design: Models and Methods" appears, presenting the computational methods used by researchers and pharmaceutical companies. Each chapter explains a technique with high precision so that readers can apply it in their research.

This first edition is organized into nine chapters, namely:

Chapter 1 "Ligand- and Structure-Based Drug Design (SBDD and LBDD)": Promising Approaches to Discover New Drugs. Here, the reader will have an approach from a historical perspective on strategies used in designing new drugs until the development of LBDD and SBDD strategies, exemplifying important discoveries of commercial drugs.

Chapter 2 "Quantitative Structure-activity relationship (QSAR) in studying the biologically active molecules". This chapter will bring the principles and methods of this technique based on LBDD. It will present a historical perspective from the first QSAR models to the most current ones like 6D-QSAR. Furthermore, it provides a great read on protocol validation procedures, which are crucial to successful QSAR studies.

Chapter 3 "*Pharmacophore Mapping: An Important Tool in Modern Drug Design and Discovery*". This chapter approaches a method that can be applied to SBDD and LBDD protocols. The reader will have a historical perspective of the evolution of the method, a presentation of the leading software used, and, in the end, a great background on carrying out a well-validated virtual screening protocol based on pharmacophore. Further, the text addresses successful studies and how their protocols were carried out.

Chapter 4 "Up-To-Date Developments In Homology Modeling". Similar to the previous chapters, the readers will have a theoretical basis on the technique, quite explored when there is information about the target without an experimental structure. Homology modeling is a powerful tool for constructing and applying molecular targets in drug design studies. With this, readers can perform this protocol safely and efficiently.

Chapter 5 "Anticancer Activity of Medicinal Plants Extract and Molecular Docking Studies". In fact, this is the most world to the ione or anywhere Studies". In fact, this is the most used tool by drug developers worldwide. Through this technique, new drugs can be safely planned, or even virtual screenings can be carried out to find new drugs. Thus, the authors will bring the technique's theoretical framework, the method's evolution, computational software, and studies in which the application of molecular docking was vital to finding promising molecules.

be alsuments of anywhich is tributed of uploaded to anyone of anywhich is tributed of uploaded to anyone of anywhich is tributed of uploaded to any one of Chapter 6 "FBDD & de novo Drug Design". In this chapter, the main tools used in Fragment-Based Drug Design (FBDD) and *de novo* Drug Design (DNDD) will be presented,

mainly through in silico approaches. It is essential to highlight that these methods control molecules from scratch, generating critical *hits* that later become optimizable *leads*. In addition, all the theoretical frameworks and important discoveries are applied through these strategies.

Chapter 7 "*Molecular simulation in drug design; an overview of molecular dynamics methods*". Despite being a promising technique, molecular docking has several problems, such as disregarding the flexibility of the active site during simulation. Thus, this chapter will address the molecular dynamics technique, which tries to solve some problems from molecular docking. In fact, with the popularization of computers in drug design, this is the fastest-growing technique, and its application is essential in drug discovery programs. Thus, with great clarity, the authors present the theoretical framework and how to apply it in a design campaign for new drugs.

Chapter 8 "Quantum Chemistry in Drug Design: density function theory (DFT) and other quantum mechanics (QM)-related approaches". The application of quantum chemistry (QM) protocols in predicting biological activity or enzymatic mechanism are highlighted in the current drug discovery process. Increasingly, researchers are adopting these tools in their drug development projects. Thus, in this chapter Rodrigues et al. They explored the entire theoretical foundation of QM, focusing on applying Density Functional Theory, providing new insights to medicinal chemists to use in their projects.

Chapter 9 "*Free energy estimations for drug discovery: Background and perspectives*". This chapter is one of the most current and essential in this book. Here are shown energy predictions and applications of perturbation theory in drug design. This approach has gained increasing prominence in medicinal chemistry, mainly for solving some limitations related to classic MD simulations. In this way, an excellent theoretical framework and its application in drug design are shown with updated examples.

I hope that with this book, readers will have new insights and be able to safely apply the protocols shown here, providing new trends that help discover new drugs to improve the quality of life of the world's population.

Igor José dos Santos Nascimento

Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF) Departamento de Farmácia Universidade Estadual da Paraíba Campina Grande-PB Brazil

REFERENCES

- [1] Nascimento IJS, de Aquino TM, da Silva-Júnior EF. The New *Era* of Drug Discovery: The Power of Computer-aided Drug Design (CADD). Lett Drug Des Discov 2022; 19(11): 951-5.
 [http://dx.doi.org/10.2174/1570180819666220405225817]
- [2] Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28(15): 2887-942. [http://dx.doi.org/10.2174/1875533XMTA5rMDYp5] [PMID: 32787752]

ii

List of Contributors Nate use only

Abha Vyas

Anwesha Das

Arijit Nandi

Blanca Colín-Lozano

Burak TÜZÜN

Dharmraj V. Pathak

Edeildo Ferreira da Silva-Júnior

Emin SARIPINA

Esin Aki-Yalcin

Fernando D. Prieto-Martínez

Francisco Jaime Bezerra Mendonca-Júnior

Igor José dos Santos Nascimento

Hardik G. Bhatt

Mallika Alvala Muhammed Tilahun Muhammed

Paresh K. Patel

Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad 382 210, India

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India

Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur-713206, West Bengal, India

Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México

Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey

Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad 382 210, India

Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 5587072-970, Alagoas, Maceió, Brazil

Laboratory of Medicinal Chemistry, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 5587072-970, Alagoas, Maceió, Brazil

epartment of Chemistry, Faculty of Science, Erciyes University, Melikgazi, 38039, Kayseri, Turkey

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cyprus Health and Social Sciences University, Guzelyurt, Northern Cyprus

Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México

Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa 58429-500, PB, Brazil

Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India

Pharmacy Department, Estácio of Alagoas College, Maceió-AL, Brazil Pharmacy Department, Cesmac University Center, Maceió-AL, Brazil Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande-PB, Brazil

MARS Training Academy, Hyderabad, India

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey

Not be distributed or uploaded to anyone or anywhere. For personal private use only. For personal private use only. Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad 382 210, India

Peng Zhan

Rodrigo Santos Aquino de Araújo

Ricardo Olimpio de Moura

Samuel Baraque de Freitas Rodrigues

Serap ÇETINKAYA

Sneha R. Sagar

Thayane Regine Dantas de Mendonça

Vijeta Kumari

Yelzyn Galván-Ciprés Not be dif

one or anywhere. private use only. Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China

> Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa 58429-500, PB, Brazil

> Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande-PB, Brazil

> Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 5587072-970, Alagoas, Maceió, Brazil

Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey

Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad 382 210, India

Laboratory of Medicinal Chemistry, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 5587072-970, Alagoas, Maceió, Brazil

Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani Campus, Pilani-333031, Rajasthan, India

Not be distributed or uploaded to any one For personal private use of Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Not be distributed or uploaded to anyone or anywhere.

iv