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Abstract
Landfill leachate is a mixture of highly concentrated organic and inorganic pollutants and needs to be treated properly due to 
their toxicity and serious adverse effects on the environment. Recently, advanced oxidation processes have been successfully 
applied for leachate treatment. In this study, the removal of chemical oxygen demand (COD), total organic carbon (TOC) 
and absorbable organic halogens (AOX) in waste leachate stabilized by the electro-Fenton (EF) process, which is one of the 
advanced oxidation processes, was investigated. For this purpose, a jacketed reactor in which the electrochemical process 
takes place was designed and iron electrodes were used for maintenance and cost efficiency in this process. Within the scope 
of the study, the efficiency of the important process parameters, such as pH, current density, catalyst amount, oxidant dose 
and electrolysis time, was determined and their values were optimized. Optimum values were found to be as pH 3, current 
density 150 A/m2, hydrogen peroxide amount 500 mg/L and electrolysis time 10 min. The best removal efficiencies were 
obtained as 71.7% COD, 97.4% AOX and 90.87% TOC under optimum conditions. In addition, within the scope of this 
study, the collapsibility and operating costs of the sludge having formed as a result of the EF process were also examined. 
It has been observed that especially the sludge formed as a result of the EF process has good settling properties. When the 
results were evaluated, it was confirmed that the EF process can be used efficiently to break down leachate organics in terms 
of wastewater quality and discharge limits.
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Introduction

Landfill is one of the most common methods for the dis-
posal of municipal solid waste (MSW) all over the world 
because of its economic advantages. One of the most 
important problems in sanitary landfills is leachate man-
agement. Leachate waters are waters containing dissolved 
and suspended form of physical, chemical and biological 
pollution. Leachate water consists of a complex mixture of 
organic and inorganic compounds with a distinctive odour. 
Leachate water may contain organic and inorganic ions 
and micro-pollutants in addition to metals. For this reason, 
landfill leachate generated in solid waste landfills is one of 

the most difficult and expensive wastewaters to treat owing 
to the high amount of organic and inorganic pollutants 
in its structure. It is often referred to as “difficult waste-
water” and has a more concentrated pollution load when 
compared to many domestic and industrial wastewaters. 
They are highly toxic and carcinogenic wastewaters and 
can cause significant harm to the environment and human 
health (Baderna et  al. 2019; Kapelewska et  al. 2019). 
When the stored waste reaches its saturation capacity, 
pollutants such as organic substances, dissolved salts and 
heavy metals from garbage in the landfill are transported 
and leak out. The resulting leachate can pass from the soil 
to the ground and surface waters and affect the quality of 
the ground and surface water in that place. Transport of 
dissolved substances in leachate is an important source 
of pollutants for surface and groundwater. Since leachate 
affects the aquatic ecosystem and human health, it must 
be kept in a landfill or treated before being released into 
the aquatic ecosystem. Many parameters such as chemical 
oxygen demand (COD), biological oxygen demand (BOD), 
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absorbable organic halogens (AOX) and total nitrogen 
(TN) are important for the type of treatment technology 
to be applied. In the early stages, leachate contains signifi-
cant amounts of  BOI5, COD, total dissolved solids (TDS), 
nutrients and heavy metals. Collecting leachate and return-
ing it to the landfill is an effective method used in leachate 
treatment. When the leachate is rotated, the components 
in the leachate are reduced by the biological activity and 
other physical processes and chemical reactions that occur 
in the landfill. The increase in non-degradable organic lea-
chate components (especially residual COD and AOX) is 
mainly a function of dilution. The  BOD5/COD and COD/
TOC ratios are common indicators of organic compound 
biodegradability and the oxidized state of organic carbon. 
In particular, if the COD exceeds the receiving environ-
ment discharge limits, significant problems arise. In stud-
ies on the treatment of leachate, it has been reported that 
almost half of the pollutants, including many inorganic 
pollutants, are below the direct discharge limits. It has 
been reported that the parameters exceeding the discharge 
limits are predominantly organic substances (COD,  BOD5 
and AOX) and nitrogen (mainly  NH4-N and  NO3-N) (Liu 
et al. 2015; Mor et al. 2018; Vaccari et al. 2018; Yu et al. 
2020). The European Union (EU), as well as certain Euro-
pean countries, have limits for the discharge of leachate 
for time periods. Council Directive 1999/31/EC of on the 
landfill of waste (EC 1999), Council Directive 91/271/
EEC concerning urban wastewater treatment (EC 1991), 
Water Framework Directive 2000/60/EC (EC 2000) and 
Waste Framework Directive 2008/98/EC (EC 2008) are 
among the major European regulations governing the stor-
age and leachate management. In Turkey, the limit val-
ues stipulated for “Discharge of wastewater to wastewater 
infrastructure facilities and surface waters” specified in 
the Water Pollution Control Regulation are applied for the 
discharge of leachate to the city wastewater sewage sys-
tem after pre-treatment (WPCR 2004). The limit values of 
some parametric pollutants for direct discharge of leachate 
or for discharge of leachate to surface water after on-site 

treatment for Turkey and other European countries are pre-
sented in Table 1 (Stegmann et al. 2003; Mukherjee et al. 
2014; Brennan et al. 2016; Pajooh et al. 2017).

AOX, which is important in terms of the type of treat-
ment technology and one of the parameters that we exam-
ined in our study, is a parameter that determines the total 
amount of organically bound halogens in wastewater. AOX 
is a parameter that should be considered because it contains 
chemicals that have mutagenic and carcinogenic effects on 
human health and is abundant in the environment. AOX 
compounds are hydrophobic and persistent. They often accu-
mulate in the food chain. They are highly toxic, and some 
species have been found to be carcinogenic and mutagenic 
(Kaczmarczyk and Niemirycz 2005; Vinder and Simonic 
2012). Organohalogens are organic compounds containing 
one of the 7A group elements such as fluorine, chlorine, 
bromine or iodine. As it is known, although the control of 
organohalogen compounds is important all over the world, 
these compounds are classified as pollutants that are danger-
ous for the environment and need to be monitored. When 
the available literature resources are examined, it has been 
seen that very few studies have been conducted on the deter-
mination and monitoring of organohalogen concentrations 
in Turkey. It is known that various studies are carried out 
in the world on monitoring and evaluation of chlorinated 
organic compounds. With regard to AOX removal, numer-
ous studies have been cited reporting that the efficiency of 
biological processes in removing these compounds from 
wastewater is less than 50% even at a hydraulic retention 
time of 15 h (Ribeiro et al. 2020a). Studies conducted in 
Finland reported that AOX welded production, whose main 
sources are the pulp industry, PVC production and waste 
incineration, is responsible for approximately 50% of the 
total organic halogen emissions to the environment (El-Hadj 
et al. 2007). It has been reported that the average concentra-
tion of AOX, which is a measure of the organic halogen load 
in a sampling site such as wastewater or sewage waste soil, 
in sewage wastes is approximately 37 g/L (Schowanek et al. 
1996). 56% of the priority pollutants identified by the United 

Table 1  Limit values for direct 
discharge of leachate or for 
discharge of leachate to surface 
water after in situ treatment

(aComposite sample 2 H, bcomposite sample 24 H)
* Existing discharge standards for the AOX parameter in Turkey are not included in the table, since they are 
not covered by the regulation

Parameters Turkey The Netherlands Germany Ireland France

pH 6–9 6–9 – – 7.52 –
Suspended solids (SS) (mg/L) a200 b100 30 – – 100
Oil and grease (mg/L) a20 b10 – – – –
Chemical oxygen demand (COD) (mg/L) a700 b500 75–150 200 141 120
Total nitrogen (TKN) (mg/L) a20 b15 20 70 261 30
*Adsorbable organic halogens (AOX) (mg/L) – – – 0.5 – –
Total phosphorus (TP) (mg/L) a2 b1 – 3 – –
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States Environmental Protection Agency (USEPA) and 23 
persistent organic pollutants controlled by the Stockholm 
Convention are all reported to be AOX compounds (Xie 
et al. 2016). Due to the harmful effects of organic halogens, 
AOX removal studies have been carried out in leachate and 
other industrial wastewater (Lei et al. 2007; Nooten et al. 
2008; Goi et al. 2009; Xie et al. 2017; Milh et al. 2020; 
Ribeiro et al. 2021; Xu et al. 2021). Due to the pollutant 
parameters described above, leachate treatment requires a 
very difficult and complex process compared to domestic 
wastewater. Therefore, it is necessary to check the genera-
tion of leachate water for toxicity or adverse environmental 
effects and to treat it with appropriate treatment methods 
to meet local discharge standards (Qi et al. 2018; Tenodi 
et al. 2020). Because of its high chemical stability and/or 
low biodegradability, using physical, chemical and biologi-
cal treatment methods alone in leachate treatment is difficult 
to obtain the desired treatment efficiency and wastewater 
quality. For this, a combination of these methods is usually 
recommended for leachate treatment (Muller et al. 2015; 
El-Gohary et al. 2016; Saleem et al. 2018; Miao et al. 2019). 
Regarding leachate treatment in the literature, different treat-
ment processes such as air stripping (De et al. 2019; Smaoui 
et al. 2020), coagulation–flocculation (Taoufik et al. 2018; 
Djeffal et al. 2021; Cheng et al. 2021), adsorption (Augusto 
et al. 2019; Reshadi et al. 2020; Ren et al. 2020), membrane 
processes (Chen et al. 2021; Shu et al. 2021; Nazia et al. 
2021; Farinelli et al. 2021; Feng et al. 2021) chemical or 
electrochemical oxidation (de Oliveira et al. 2019; Mahtab 
et al. 2020; Pierpaoli et al. 2021; Wu et al. 2021) and ozo-
nation (Hoffmann et al. 2020; Yang et al. 2021; Aziz et al. 
2021) were studied. These techniques have proved suitable 
for the removal of these parameters in leachate, including 
humic, fulvic acid, heavy metals, polychlorinated biphenyls 
(PCBs), organohalogen compounds (AOXs) and some other 
persistent organic pollutants (Kamuriddin et al. 2017).

Advanced oxidation processes (EAOPs), such as Fenton 
(F), electro-Fenton (EF) and photo-Fenton (PF), have received 
increasing attention due to the efficient mineralization of toxic 
and persistent organic pollutants. It has been emphasized 
that these methods are more effective in removing the pol-
lution parameters in various synthetic and real wastewater, 
especially in landfill leachate (Tejera et al. 2019; Mohajeri 
et al. 2019; Dolatabadi et al. 2021). In recent years, the most 
studied advanced EAOPs for the treatment of pollutants from 
leachate containing hard to decompose degradable substances 
are anodic oxidation-based anodic reactions (AO) and elec-
tro-Fenton (EF)-based cathodic reactions (Santos et al. 2019; 
Nidheesh et al. 2019). EF is one of the economical and envi-
ronmentally friendly technologies that can be used in the 
treatment of domestic and industrial wastewater containing 
toxic and/or persistent organic pollutants. It takes place in 
three stages, namely Fenton process, oxidation reaction and 

coagulation (Zhang 2020; Ribeiro et al. 2020b; Li et al. 2021). 
In the Fenton process, the reaction between the iron ion and 
hydrogen peroxide leads to the generation of hydroxyl radi-
cals under acidic conditions (Eq. 1). Hydroxyl radicals have 
the ability to react non-selectively with most persistent organ-
ics to yield dehydrogenated or hydroxylated derivatives until 
total mineralization is reached (Oturan et al. 2012). Ferric ion 
produced through Fenton reaction reacts more with  H2O2 and 
regenerates iron ions (Sruthi et al. 2018). Although the Fen-
ton process is efficient, processing of hydrogen peroxide, low 
regeneration of iron ions from ferric ions and the requirement 
for higher iron ion concentrations are some of the disadvan-
tages of the Fenton process (Brillas et al. 2009; Nidheesh and 
Gandhimathi 2012; Nidheesh et al. 2013). The EF process 
is an extended Fenton process in which  H2O2 is produced 
electrolytically through two-electron cathodic reduction of 
oxygen in acidic medium. In addition to that, the EF process 
eliminates other disadvantages of Fenton processes such as 
slow iron regeneration rate, sludge formation and increased 
reaction time and solution pH (Nidheesh et al. 2014). The EF 
process overrides these disadvantages of the Fenton process by 
electro-generation of ferrous ions at the cathode as in Eq. (2) 
by in situ generation of hydrogen peroxide at the cathode in 
the presence of dissolved oxygen as in Eq. (3), and less Fe ions 
are required for the degradation of pollutants than the Fenton 
process (Hammami et al. 2007; Nidheesh et al. 2014). Usually, 
the term EF is used to describe the link between the Fenton 
process and electrochemical oxidation, and this link can be 
of different types depending on the mechanism of attachment 
or formation of the Fenton reagent (Ganiyu et al. 2018; Klidi 
et al. 2019; Basturk et al. 2021). In the EF process, hydroxyl 
radicals (OH·) are produced with Fe 2+ ions that dissolve into 
the system from the Fe electrode and mix with the solution. 
Hydroxyl radicals, which can easily degrade organic sub-
stances, show very good oxidant properties (Martinez-Huitle 
and Panizza 2018; Meng et al. 2019). Generally, carbon-based 
materials are used as cathodes in the EF process to produce 
 H2O2 via the oxygen reduction reaction (ORR). In the pres-
ence of the electrically assisted Fenton process, a significant 
increase in the oxidizing power of  H2O2 occurs (Sires et al. 
2014; Nidheesh et al. 2018a). In this process,  H2O2 can be 
continuously electrogenerated at a suitable cathode through 
electron reduction of  O2.  Fe2+ ions are added as a catalyst in 
an acidic environment to obtain  Fe3+ ions and  OH− from the 
Fenton reaction and to increase the low  H2O2 oxidation ability 
(Eqs. 2,3) (Rueda-Marquez et al. 2020; Hussain et al. 2022).

(1)Fe2+ + H2O2 → Fe3+ + OH− + HO⋅

(2)Fe3+ + e− → Fe2+

(3)O2 + 2H+ + 2e− → H2O2
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Here,  H2O2 is formed by simultaneous reduction of  O2 
on the cathode surface, and  Fe2+ is formed as a result of the 
reduction of  Fe3+. In consequence of the reaction of  H2O2 
and  Fe2+, hydroxyl radicals  (OH·) are produced homogene-
ously (Liu et al. 2007). Faster  Fe2+ regeneration accelerates 
the formation of OH· radicals by the Fenton reaction. This 
cycle is sustained throughout the electrolysis, and approxi-
mately 75% of the spent  O2 is recovered by the  O2 formed as 
a result of the oxidation of water on the anode surface during 
the electrolysis (El-Ghenymy et al. 2012; Fernandes et al. 
2017). In undivided cells, although the process proceeds in 
a complex manner over reactive oxygen species, the main 
oxidizing agents are OH· radicals. Pollutant-based organ-
ics in the same environment are decomposed by reacting 
with  OH· radicals, and if the electrolysis time is sufficient, 
they become mineralized throughout the process (Nurhayati 
2012; Javaid and Qazi 2019). Since the reactions are carried 
out at optimum pH 3.0 value, the  Fe3+ species are predomi-
nantly in the form of Fe(OH)2+. It is reduced electrochem-
ically to  Fe2+ for subsequent reactions (Eqs. 4, 5) and is 
formed in other reactions as shown in equations (6,7) (Sires 
and Brillas 2021; Divyapriya et al. 2021). This formation 
accelerates the removal of organic pollutants according to 
the anodic oxidation and Fenton type reactions applied sepa-
rately (Divyapriya et al. 2018; Karatas et al. 2022).

In this study, the applicability of the electro-Fenton pro-
cess for the treatment of regular landfill leachate was inves-
tigated in detail. In order for this process to be applied effec-
tively, the effect of operating parameters such as pH, current 
density, electrolysis time and  H2O2 concentration has been 
investigated and optimized. In addition, oxidation reduc-
tion potential (ORP) analysis was performed. The removal 

(4)Fe
3+ + H

2
O → Fe (OH)2+ + H

+

(5)Fe (OH)2+ + e
−
→ Fe

2+ + OH
−

(6)Fe
3+ + H

2
O

2
→ Fe

2+ + HO
2
+ H

+

(7)Fe
3+ + HO

2
→ Fe

2+ + O
2
+ H

+

efficiency of the method was evaluated with COD, TOC and 
AOX removals. Aluminium sheet was used as electrode in 
the study. In addition, the effect of operating conditions on 
the settling characteristics of the waste sludge produced from 
the method was also observed. At the same time, technical 
and economic evaluation was also carried out.

Materials and methods

Study area

In the study, 5 duplicate landfill leachate samples were taken 
from the entrance of the Sivas (Turkey) landfill leachate col-
lection pool and experimental studies were carried out on 
these leachate samples (Fig. 1 a, b). In addition, samples 
were taken from the collection pool outlet and characteriza-
tion studies of the leachate were carried out. Characteristics 
values of leachate samples taken from the collection pool 
outlet and pool inlet are shown in Table 2. Average values 
were taken as basis in wastewater samples taken from the 
outlet of the collection pool where leachate accumulated.

The difference in the AOX concentrations at the inlet and 
outlet values of the collection pond indicates that this is due 
to the AOX concentrations at the wastewater inlet and that 
the AOX produced independently of the treatment efficiency 
is mostly formed after the wastewater mixture. When the 
COD and TOC values in the table are examined, it has been 
observed that these values are lower than the normal lea-
chate characteristics when compared with the normal solid 
waste landfill leachate characterization mentioned in other 
studies. Therefore, it is thought that the leachate coming into 
the collection pond is formed by the accumulation of water 
that is formed with precipitation and passes into the surface 
flow. As can be seen, the effluent values of the collection 
pool are above the discharge standards with the average 
concentration of COD (2200 mg/L) and TOC (425 mg/L). 
Furthermore, landfill leachate has a high electrical conduc-
tivity value due to its high chloride (anion) concentration, 
which allows electrochemical oxidation without the addition 
of more electrolyte.

Fig. 1  a Leachate inlet to the 
collection pond; b leachate raw 
sample
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Design of experiments

Experiments were carried out in a double-walled reactor 
made of Plexiglas, measuring 100 × 100 × 130 mm. Current 
and voltage control was provided by a digital power supply. 
Mixing was carried out with a magnetic stirrer. 1000 mL 
wastewater was used for each experiment in the reactor. In 
the reactor, 4 electrodes were spaced 20 mm apart, con-
nected in monopolar parallel, used and totally immersed 
in the electrolyte. Iron (Fe) plates with the dimensions of 
50 × 70 × 2 mm and an active surface area of 210  cm2 were 
used as the electrode material. After the desired current 
and voltage adjustment on the power supply was made, the 
electrochemical treatment process was started. The mixing 
speed has been set to 250 rpm. Samples taken from the reac-
tor at certain time intervals were prepared for analysis by 
filtering (0.45 μm filter) and centrifuging. At the end of the 
experiment period, the electrodes were washed with distilled 
water, dried, weighed and recorded. The pH was increased to 
around 10–11 in order to limit the effect of the hydrogen per-
oxide used in the EF experiment and to convert the hydrogen 
peroxide into water and oxygen. The average voltage value 
was used in the energy consumption calculations. At the end 
of the experiment, 50 mL samples were taken from the reac-
tor, and suspended solids analysis was carried out to measure 
the amount of SVI. pH, conductivity, oxidation reduction 
potential (ORP), temperature, COD, TOC and AOX meas-
urements were taken on the filtered and centrifuged samples 
taken from the reactor at certain time intervals.

Analytical methods

pH, conductivity (CPC-505), oxidation reduction poten-
tial (ORP) (Hanna 2211), COD, TOC (TApollo 9000) and 
AOX measurements of leachate samples before and after 
the experiment were taken according to the experimental 
methods determined in Standard Methods for Water and 

Wastewater analysis (APHA/AWWA/WEF 2017). A stand-
ard curve has been prepared from potassium hydrogen 
phthalate  (C8H5KO4) standard solution (50–1000 mg  O2/L 
COD) for colorimetric analysis of COD. TOC measurements 
were taken according to the “high-temperature combustion” 
method with a TOC device using 680 °C oven temperature 
and dry air. A calibration curve was created with potassium 
hydrogen phthalate standard solution to be used in TOC 
analysis. The method applied for the measurement of AOX 
is based on the principle of washing and decomposing the 
bound inorganic halogens after adsorbing the organic halo-
gen compounds to the activated carbon. The AOX measure-
ment range is between 0.05 and 2.5 mg/L. Therefore, while 
AOX measurements were taken, real wastewater samples 
were diluted by about 20 times.

The removal efficiency of COD, TOC, AOX (%R) was 
calculated according to Eq. 8.

In this equation, Ci and Ce are the initial and final concen-
trations of contaminants (e.g. AOX, mg/L) in feed solution 
and leachate streams.

Results and discussion

Effect of pH

The pH of the environment affects chemical processes such 
as dissolution, precipitation, redox and retention reactions 
between the effluent and the leachate. It is an expected situ-
ation that the electrode potential will increase linearly in the 
negative direction as the pH value of the solution increases. 
Electrical conductivity and pH are important parameters 
in electrochemical processes. The lower these values, the 
lower the current efficiency, and higher applied potentials 

(8)R(% ) =
Ci − Ce

Ci

× 100

Table 2  General characteristics 
of leachate

Parameters Collection pool output con-
centration (a)

Collection pool inlet 
concentration(b)

Average (a)

pH 8–8.5 7.5–8.5 8.25
Conductivity (mS/cm) 7.5–9.5 5.5–11 8.5
Chloride(mg/L) 1650–1750 1400–1500 1700
ORP (mV) 40–(− 120) 90–290 –
COD (mg/L) 1400–3000 370–500 2200
AOX (mg/L) 50 ± 10 5 ± 3 50
TOC (mg/L) 400–500 300–350 425
NH4-N (mg/L) 256–290 207 273
NO2-N (mg/L) 0.8–1.01 0.7 0.9
NO3-N (mg/L) 89–109 15 99
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are needed to prevent the electrode from passivation. Low-
ering the pH is an important step in the EF process because 
the degradation of organic matter is most effective at pH 
∼ 3 (Umar et al. 2010). With the increase in the ambient 
pH value, the passive zone both narrows and increases in 
the passive corrosion current density. It is known that EF 
reactions are highly dependent on solution pH compared to 
other oxidation processes and generally occur in an acidic 
environment (pH 3). There are many studies on the effect of 
solution pH on the efficiency of oxidation (Wang et al. 2008; 
Jung et al. 2009; Ghoneim et al. 2011). Acidic environment 
is the suitable condition for  H2O2 production. Since the pH 
value is considered as one of the parameters affecting the 
treatment efficiency of the method, first of all, the optimum 
pH value, which provides the removal of COD, TOC and 
AOX, was investigated in the electro-Fenton method. For 
this purpose, experiments were carried out by changing the 
initial pH value of the leachate in the range of 2–7. Dur-
ing the experiments, the current density of the sample was 
taken 150 A/m2, the  H2O2 concentration was 500 mg/L, and 
the electrolysis time was 30 min. As a result of the experi-
ments, the changes of COD, TOC and AOX removals with 
pH are presented in Fig. 2. High removal efficiencies were 
obtained in the removal of pollutants at low pH values. The 
highest COD removal efficiency was observed at pH 3 with 
71.7% at the 10th min (Fig. 2 a). In cases where the initial 

pH was > 3, reductions in yield were observed. However, a 
low pH also encourages hydrogen formation by reducing the 
number of active sites to produce hydrogen peroxide (Wang 
et al. 2010).

Considering the AOX and TOC removals, the highest 
removal efficiency for these parameters was obtained at 
pH 3, as 97.4 and 92.19%, respectively (Fig. 2 b,c). In 
the study, pH 3 value with the highest removal efficiency 
was accepted as the optimum value. This is an expected 
pH in the EF process. In acidic conditions below pH: 3, 
the hydroxyl radical  (OH·) can be interpreted as reduc-
ing the production of  Fe+2 ions. At lower pH values, it 
forms stable complexes with  H2O2, leading to the deactiva-
tion of the catalysts. Hydroxyl radicals can be scavenged 
by an overdose of  Fe2+ in the electrolyte (Eq. 9), which 
impairs the effect of hydroxyl radicals to oxidize organic 
matter (Wang et al. 2012). As a result, it is an important 
step to work at the most suitable pH in terms of positively 
affecting the process efficiency. The reason for the high 
yields, especially at low pH (acidic conditions), can be 
thought as the iron electrode used as a result of Fenton 
reactions, being in a soluble form in acidic conditions and 
decomposing  H2O2 to form OH· radicals. In other words, 
OH· radicals with organic compounds react rapidly in 
acidic medium and degradation. Also, at pHs below 3 the 
hydrogen peroxide will remain stable with respect to the 
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Fig. 2  Effect of pH in the removal of a COD, b TOC and c AOX (current density: 150 A/m2,  H2O2: 500 mg/L, electrolysis time: 30 min)
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formation of the oxonium ion (Nidheesh and Gandhim-
athi 2014a, b). The EF process becomes less effective at 
pH < 3 due to  Fe2+ regeneration, the reaction between  Fe3+ 
and  H2O2 (Ramirez et al. 2009). As the electrolysis time 
increases, there is an increase in the removal efficiency of 
all pollutants. While there was rapid removal efficiency for 
COD and TOC, especially in the 0–15 min range, no sig-
nificant change was observed even though there was a par-
tial increase after 15 min. This situation can be explained 
by the rapidity of the reactions, especially in the elec-
trolysis environment, and the dependence of the reaction 
on pH. Prevention of reaction recycling of the released 
 OH− ion with  H+ can be considered as the increase in 
removal efficiency and realizing the degradation of organic 
substances with OH· radicals formed. The decreases 
observed in the efficiency for COD and TOC parameters 
after 10 min in the study show that these parameters are 
significantly affected by the applied voltage and electro-
lytic time. Li et al. (2022a) evaluated the effectiveness 
of electro-Fenton on the degradation of waste landfill 
leachate in their study. In this study, optimum operating 
parameters and the importance of factors were evaluated 
by orthogonal experiment. Voltage, electrolytic time and 
 H2O2/Fe2+ molar ratio which is used in COD removal are 
reported, and the order of importance of the factors is as 
follows:  H2O2/Fe2+  > voltage > electrolyte time >  H2O2/
COD0 > pH. It was concluded that  H2O2/COD0 and pH 
had less significant effect on COD removal. These results 
showed that  H2O2/Fe2+, voltage and electrolytic time play 
an important role in COD removal, while  H2O2/COD0 and 
pH have less important effects.

When  Fe+2 ions rise above pH: 5–6, they form hydroxyl 
complexes instead of hydroxyl radicals (OH·), and  H2O2 
decomposes under basic conditions and loses its oxida-
tion ability (Arslan-Alaton and Erdinc 2006; Wang et al. 
2016). In other words, the increase in pH causes the elec-
trocoagulation process in which the pollutants are removed 
by the complexation of the reactions due to electrostatic 
attraction and/or conversion of  Fe2+ and  Fe3+ to Fe(OH)n 
type structures (Mollah et al. 2001). At higher pH values, 
iron species begin to precipitate as ferric hydroxides. Self-
decomposition of  H2O2 also an increase in a more alkaline 
environment, which brings up the fact that all  H2O2 added 
to the electrolyte does not play a role (Li et al. 2022a). 
Since Fe(OH)3 will precipitate at higher pH values, it 
causes the decomposition of  H2O2 to  H2O and  O2 (Eq. 10). 
With the increase in pH, the iron ions in the medium turn 
into  Fe3+ hydroxide form, which is formed under basic 
conditions and has a precipitating feature and causes the 
efficiency of the system to decrease. At pH values close to 
neutral, iron ions are mostly found in the form of hydroxyl 
complexes such as Fe(OH)2, Fe(OH)−. Therefore, the fact 
that  Fe2+ oxidation depends on the ambient pH can be 

attributed to the oxidation of not only  Fe2+ but also Fe 
(OH)− (Shemer and Linden 2006).

Effect of current density

Another working parameter that is effective in the EF 
method is the magnitude of the current applied to the elec-
trons in the system and it is the most important parameter 
that affects the reaction rate of electrochemical processes. 
The applied current is the driving force for the reduction 
of oxygen leading to the formation of hydrogen peroxide 
at the cathode. In the EF process, the rate of OH formation 
during radical point electrolysis is controlled by the applied 
current. Increasing the current density increases the removal 
efficiencies up to an optimum value. Higher current applica-
tion increases the amount of hydrogen peroxide produced. 
Accordingly, the number of hydroxyl radicals, which are 
highly reactive in the electrolyte medium and responsible 
for degradation, also increases (Ghanbari and Moradi 2015; 
Kubo and Kawase 2018; Marlina and Purwanto 2019). In 
addition to increasing the amount of OH· in the solution, 
the use of high currents increases the regeneration of iron 
ions, which increases the effectiveness of the EF process. 
The degradation of organics by the electro-Fenton process 
is dependent on the appropriate  Fe2+ concentration as well 
as the  H2O2 concentration (Xia et al. 2015). Higher electro-
regeneration of  Fe+2 ion than  Fe+3 ion with increasing cur-
rent increases the efficiency of EF chain reactions (Zhang 
et  al. 2007). Conversely, when a low current density is 
applied, it shows inhibition of the degradation rate due to the 
low concentration of oxidants produced; thus, Eq. (1) gives 
a smaller concentration of OH· radical point (Mohajeri et al. 
2010). For this reason, the current value to be used in the 
system should be well determined in order not to increase 
the cost arising from energy.

In order to examine the effect of current density on the 
COD, AOX and TOC removal efficiencies in the EF process, 
the current density was applied by changing it in the range 
of 50–300 A/m2 and is presented in Fig. 3. In the experi-
mental study on the effect of current density, pH 3,  H2O2 
concentration was taken as 500 mg/L and electrolysis time 
was taken as 30 min and all experiments were carried out at 
room temperature. As shown in Fig. 3, there is an increase 
in the COD, TOC and AOX removal efficiencies when the 
current density is increased from 50 to 150 A/m2 in the first 
10 min of the electrolysis period. This increasing trend can 
be attributed to more OH· production at the anode surface as 

(9)Fe2+ +∙ OH → Fe3+ + OH−

(10)H2O2 → 2H2O + O2
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well as higher electro-regeneration (Eq. 11) of ferrous ions 
from ferric ions at high current density, which increases the 
efficiency of Fenton chain reactions. The continuous con-
version of  Fe3+ to  Fe2+ is a major advantage over chemical 
Fenton systems.

The highest removal efficiencies for all pollutant param-
eters were obtained at 150 A/m2 current density. The graphs 
show that the optimum operating conditions are approxi-
mately pH 3,  H2O2 500 mg/L, current density 150 A/m2 and 
reaction time of 15 min. Under these conditions, COD, TOC 
and AOX removals were obtained as 71.7, 91.72 and 97.4%, 
respectively. Moving away from these points indicates 
decreased removal efficiency. This means that no increase 
or decrease is desired in any of the variables tested. The low 
removal efficiencies at low currents may be due to an inhib-
iting effect of the degradation rate, possibly due to the low 
concentration of oxidants produced. Figure 3 shows that the 
electrolysis time has a positive effect on the mineralization 
of the leachate and the removal of pollutant parameters. It 
is noted that the maximum COD, TOC and AOX removals 
are achieved in about half an electrolysis time of the studied 
range. After that, the removal efficiency did not change sig-
nificantly. Obtaining the highest removal efficiencies at this 
current density means that the degree of anodic dissolution 

(11)Fe3+ + e− → Fe2+

of the iron increases. This situation explains the greater 
precipitate formation to remove contaminants. On the other 
hand, as the bubble size gets smaller with increasing current 
density, the bubble formation rate increases, and this results 
in higher pollutant removal efficiency with  H2 flotation tools 
(Orkun and Kuleyin 2012).

In the EF process,  Fe2+ given to the environment is sup-
plied from the dissolving iron electrodes depending on the 
current density at the anode, and it appears with a certain 
current density in a sufficient amount of solution. In Fenton 
and similar oxidation processes, the production of hydroxyl 
radicals generally decreases with the rapid depletion of  Fe2+. 
The reason for this is explained as being by researchers in 
similar studies that the rate constant of the reaction between 
OH· and  Fe2+ (3.2 108 M-s-) is approximately 10 times the 
rate constant of the reaction between OH· and  H2O2 (Qiang 
et al. 2003; Choi et al. 2010; He and Zhou 2017). Therefore, 
rapid regeneration of  Fe2+ is essential for the continuous 
production of OH. Although  H2O2 and  Fe2+ can be produced 
simultaneously, the applied electrical force primarily favours 
the formation of  H2O2. Again, in this method, the OH· radi-
cal can be produced in a controlled manner in direct propor-
tion to the electric current used. Based on this feature, it is 
easily possible to correlate the reactions of other substances 
with the OH· radical concentration, with the amount of 
electric current used. Higher applied current density means 
higher applied voltage in the electrochemical system (Wang 
et al. 2010; Nidheesh and Gandhimathi 2012). However, 
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in high-current conditions, while the energy consump-
tion increases, the efficiency does not show much change. 
The degradation rate of organic pollutants is constant after 
300 mA. This is due to the  H2O formation as in Eq. (12) 
(Ozcan et al. 2008). The efficiency of the EF will be real-
ized less at higher current density. The reason for this is due 
to competitive electrode reactions in the electrolytic cell. 
Further increase in current density will cause competitive 
electrode reactions such as oxygen discharge at the anode 
(Eq. 13) and hydrogen production at the cathode (Eq. 14). 
These reactions inhibit the main reactions (Eqs. 12–15) and 
cause a decrease in EF activity (Zhang et al. 2006; Korbahti 
and Tanyolaç 2008; Varank et al. 2020).

Oxidation reduction potential (ORP) is a measure of 
water's cleanliness and ability to break down contaminants 
and is measured in millivolts (mV). In short, the ORP meas-
urement determines the quality of the water. If the result of 
the measurement is positive, it indicates that the oxidation, 
that is, rusting and spoiling/corrosive effects, of this water is 
dominant; if a negative value is found, this water has reduc-
ing, that is, antioxidant power. ORP has a close relationship 
with the specific electrical charge during the electro-oxi-
dation process and can affect the COD removal efficiency. 
The ORP value represents a comprehensive indicator of the 
effect of current density, contaminants and reaction time on 
the performance of the electro-oxidation system and can be 
used as an effective control factor to optimize the electro-
oxidation process (Wang et al. 2018; Mei et al. 2019). The 
change of ORP values over time at different current density 
values in the EF process is shown in Fig. 4. ORP decreases 
with increasing current density and electrolysis time. This 

(12)4H+ + O
2
+ 4e− → 2H2O

(13)2H2O → Fe (OH)2+ + 4H+ + O
2
+ 4e−

(14)2H+ + e− → H2

(15)2H2O → HO ∙ +H+ + 4e−

decrease value accelerated, especially with the increase in 
the current density. This can be explained by the inability 
of the Fe electrode used as the anode in the EF process to 
maintain its oxidation potential in the environment. Dur-
ing the electrolysis, the iron dissolved in the anode passes 
into the environment as  Fe+2, and the  OH− ions formed, 
especially at the cathode, during the electrolysis of water 
rapidly degrade the  H2O2 in the environment and the oxida-
tion potential decreases.

Effect of  H2O2 concentration

The main source of OH· radicals that will form in the sys-
tem in EF oxidation is  H2O2.  H2O2 consumption in F and 
EF reactions is one of the most important factors limiting 
the effectiveness of the method (Teymori et al. 2020). In 
order to determine the optimum value of  H2O2 concentra-
tion, which is one of the components of the EF process, 
different doses of  H2O2 between 0.25 and 2.0 g/L were 
added to the leachate  (H2O2/Fe+2 ≅ 1). In the study, the 
treatment efficiencies obtained as a result of the experi-
ments carried out to determine the relationship between 
different  H2O2 concentration and the treatment efficiency 
at constant pH(3) and current density (150 A/m2) are pre-
sented in Fig. 5. With the increase in the  H2O2 concentra-
tion, the removal efficiency of pollutants increases (Ting 
et al. 2009). As the initial  H2O2 concentration added to 
the system increases, the amount of OH· radical formed 
increases, resulting in an increase in COD removal (Fig. 5 
a). Since hydroxyl radicals are very active and fast from 
the moment they are formed in the environment, they 
react in a short time with the organic substances in the 
environment and increase the removal efficiency. It has 
been observed that COD removal increased up to 71.7% 
at 0.5 g/L  H2O2 concentration in 10 min oxidation time. In 
similar studies, it has been reported that reduced feeding 
time increases the rate of COD removal at baseline (Lopez 
et al. 2004; Zhang et al. 2006; Umar et al. 2010; Nidheesh 
and Gandhimathi 2012). A rapid COD reduction in the first 
10 min of the process may be due to oxidation of easily 

Fig. 4  ORP change over time in 
the EF process
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degradable organic compounds. However, the reduction 
in removal rates at other reaction times (10-30 min) is 
probably due to a gradual slowing of the rate of degrada-
tion due to the formation of short-chain organic acids and 
hardly oxidizable by-products (Khajouei et al. 2019). The 
purpose of chemical oxidation is to remove the organic 
pollutant from the environment without creating a differ-
ent pollutant or toxic product as an intermediate product 
while oxidizing. Otherwise, toxic substances may form as 
intermediate products and cause low yield. In the oxida-
tion time (10 min.) where the highest removal efficiency 
was obtained, the removals of COD, TOC and AOX were 
found to be 97.4, 91.03 and 97.4%, respectively (Figs. 5, 
6). It is seen that the removal efficiencies remain almost 
constant at values above the  H2O2 concentration, where 
sufficient oxidant concentration is provided (0.5 g/L). In 
trials where higher concentration values (0.75–2.0 g/L 
 H2O2) were applied, no significant increase in COD 
removal was achieved. Further increase in  H2O2 from 0.5 
to 2 g/L decreased the COD removal efficiency by 4%. At 
higher hydrogen peroxide concentrations, a decrease in 
treatment efficiency was observed due to increased reac-
tions as in Eq. (16) and recombination of hydroxyl radicals 
and other scavenging reaction Eq. (18), which retard the 
efficiency of the Fenton process. Similar results were also 
reported by Daud et al. (2013), Xavier et al. (2015), Nid-
heesh and Rajan (2016), Hassan et al. (2017) and Güvenç 
et al. (2019). Another reason for this may be the decrease 

in the  H2O2/Fe(II) ratio as more of the iron plates dissolve 
and go into solution as explained below.

To maximize the efficiency of the process, it is crucial to 
determine the optimum operational  H2O2 /Fe2+ molar ratio. 
The increase in  H2O2/Fe(II) molar concentration in electro-
Fenton oxidation causes parasitic reactions in the system to 
dominate. As the dose of  H2O2 used as an oxidant increases, 
oxidation of organic substances takes place, but after a cer-
tain time there is little or no change in the environment. This 
process continues until the  H2O2 threshold is reached. A rapid 
reduction in aquatic toxicity occurs with continued addition 
of the oxidant after the threshold point. For this reason, a cer-
tain amount of  H2O2 must be given in the EF process (Khatri 
et al. 2018; Kerboua et al. 2021). A decrease in the purifica-
tion efficiency has been observed at higher hydrogen peroxide 
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concentrations, due to the increased reactions between hydro-
gen peroxide and hydroxyl radicals. The reduction in removal 
efficiency at a high dose of  H2O2 is due to the scavenging 
effect of  H2O2 hydroxyl radicals (Eqs. 16, 17) and recom-
bination of hydroxyl radicals (Eq. 18) (Xavier et al. 2015; 
Wang et al. 2022). On the other hand, the formation of OOH·, 
which is significantly less reactive than hydroxyl radicals, also 
reduces the reaction rate (Babuponnusami and Muthukumar 
2012; Rahmani et al. 2015). The concentration of the hydroxyl 
radical, which is the main oxidizing agent in the EF process, 
increases with the increase in the  Fe2+ concentration. However, 
when there is an excess of iron ions in the electrolyte solution, 
it can consume hydroxyl radicals and affect the degree of deg-
radation (Babuponnusami and Muthukumar 2014). Mohajeri 
et al., (2010, 2019) emphasized that the removal efficiency 
decreases with any increase in the  H2O2/Fe2+ molar ratio 
above 1 in their study on landfill leachate treatment by electro-
Fenton oxidation. They interpreted that the reason for this may 
be the change in the reaction mechanisms of Fenton and the 
emergence of some side reactions, and that excess hydrogen 
peroxide has a suppressive effect (Eq. 16). This reaction leads 
to the production of the hydroperoxyl radical, a species with 
much weaker oxidizing power compared to the hydroxyl radi-
cal, and at the same time, an excess of hydrogen peroxide can 
cause spontaneous decomposition of  H2O2 into oxygen and 
water and recombination of OH radicals. This phenomenon 
of dissociation and recombination reduces the concentration 
of hydroxyl radicals and the efficiency of compound elimina-
tion (Eqs. 17, 18) (Ting et al. 2009; Lodha and Chaudhari 
2007; Bautista et al. 2007; Ay et al. 2008). Moreover, at higher 
iron catalyst dosages, excess  Fe2+ will act as hydroxyl radical 
scavenger and oxidized to  Fe3+ as shown in Eq. (19). Thus, the 
hydroxyl radical available for the oxidation of organic matter 
will decrease and the COD removal efficiency will decrease. 
At lower doses, the amount of  Fe2+ leaching will be insuf-
ficient for sufficient hydroxyl radical production and COD 
removal efficiency will decrease (Baiju et al. 2018). On the 
other hand, when the molar ratio  (H2O2/Fe2+) is low, COD 
removal decreases due to the scavenging effect of excess  Fe2+ 
(Eq. 19). There is a competition between  Fe2+ and organic 
compounds for hydroxyl radicals, resulting in reduced COD 
and TOC removal efficiencies. Hydroxyl radicals generated via 
Fenton reactions react with excess  Fe+2 ions present and get 
converted into its ionic form. Similar results were also reported 
by Laiju et al (2014), Sruthi et al (2018). Furthermore, the  Fe3+ 
formed can react with  H2O2 (Eq. 20) to form  Fe2+ and hydrop-
eroxyl radicals  (HO2) in solution (Meriç et al. 2004; Badawy 
and Ali 2006; Deng 2007; Lee and Shoda 2008).

(16)H2O2 + OH∙ → H2O + HO∙
2

(17)HO.
2
+ OH∙ → H2O + O2

In terms of removal efficiency, it is seen that TOC and 
AOX parameters are not much affected by the  H2O2 feeding 
mode (Fig. 5 b-c). Del Moro et al. (2016) they have empha-
sized in their study on the treatment of landfill leachate that 
the AOX profile largely depends on the applied operating 
conditions (current density, reaction time, etc.) and the type 
of organic compounds (aliphatic or aromatic compounds) in 
the leachate. In addition to these findings in other studies, 
it was concluded that working at higher current densities is 
more efficient in terms of the formation and cascading of 
HOCs. When the other studies on AOX removal were exam-
ined, different AOX formation and removal profiles were 
obtained under variable experimental working conditions. 
Study results show that AOX formation generally increases 
during the initial stages of reaction times, followed by 
removal of AOX (Zhang et al. 2018a, b; Iskurt et al. 2022).

In Fig. 7, the variation of ORP at different  H2O2 con-
centrations with time is given. As the oxidant concentra-
tion increases, the oxidation potential of the medium 
increases and it becomes more stable. This situation can 
be explained by the rise in the concentration of  H2O2, as 
already explained.

In addition, a spectrum scan was carried out in the wave-
length range (WR) of 190–1100 nm, of the output samples 
obtained under optimum conditions with the highest treat-
ment efficiency (Fig. 8). In the spectrum scanning of the 
samples taken at certain time intervals (2–80 min), the con-
version of organic substances into different compounds as 
a result of the reaction with OH· radicals was examined, 
and an evaluation was made in terms of optimum pH value. 
According to the results obtained from the analyses, it was 
verified from the spectrum scanning that the optimum elec-
trolysis time (10 min) and pH (3) values were determined 
as optimum values.

Sludge sedimentability and economic analysis

Sludge formation is influenced by many factors, such as the 
characteristics of the treated wastewater and the applied 
treatment parameters such as current density and reaction 
time. In some cases, COD removal and the volume of sludge 
produced should be evaluated together to determine the opti-
mum process parameters (Guven 2021). One of the most 
important advantages of electrochemical methods over other 
treatment methods is that less sludge is generated as a result 
of treatment. However, it still requires the addition of iron 

(18)HO ∙ +OH∙ → H2O2

(19)Fe+2 + OH∙ → Fe+3 + OH−

(20)H2O2 + Fe+3 → Fe+2 + HO2 + H+
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or  H2O2, which can easily cause iron sludge precipitation 
(Zhang et al. 2018a, b; Lu 2021; Meng et al. 2022). With the 
increase in the electrolysis time, iron ions accumulate in the 
aqueous medium and lead to the precipitation of Fe(OH)3; 
however, it can reduce the amount of electricity use. Thus, 
these types of pollutants are decomposed by oxidation and 
coagulation, but the sludge is not treated. On the other hand, 
sludge production can be reduced by the EF process, in 
which  H2O2 is added from the outside and  Fe2+ is produced 
in situ (Nidheesh et al. 2018b; Casado 2019; Zhang et al. 
2019). The electro-Fenton system can continuously regener-
ate iron ions from ferric ions and further reduce ferric sludge 
compared with traditional Fenton. EF technology requires a 
smaller dosage and produces less iron sludge (Casado 2019; 
Li et al. 2022b). Due to the large flocs formed in the unit, 
the settling characteristics of such sludge are quite good. 
However, gas bubbles occurring at the anode and cathode 
can increase the sedimentation time of the sludge formed 
(Xu et al. 2020). Generally, the settling characteristics of the 
formed sludge are determined by the sludge volume index 
(SVI). SVI is generally used to control the settling proper-
ties of biological suspensions and is obtained by dividing 
the volume of precipitating sludge (mL/L) by the ratio of 
suspended solids (mg/L). Sludge with an SVI value of < 100 
is considered to have good settling characteristics. Table 3 

shows the SVI values of the sludge obtained in the EF pro-
cess under different operating conditions. As can be seen 
from the table, when the effect of initial pH on the sludge 
settleability was examined, it was observed that the SVI 
value decreased at pH 3. This event suggests that Fe(OH)
n flocs may occur as larger and stable flocs under slightly 
acidic conditions. It was detected that SVI values increased 
with increasing current density and  H2O2 concentration. The 
reason for the increase observed in high  H2O2 concentrations 
can be considered as the deterioration of the flock structure 

Fig. 7  Time-dependent ORP 
change in EF process
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Table 3  SVI values of sludge obtained in different operating condi-
tions in the EF process

Bold  indicates  the pH results (pH 3) which is best condition

pH SVI 
(mL/g)

Current 
density (A/
m2)

SVI 
(mL/g)

H2O2 
(mg/L)

SVI (mL/g)

2 102.94 50 125 0 –
2.5 82.67 100 109.75 250 199.07
3 67.92 150 69.23 500 73.39
3.5 77.25 200 80.97 750 65.93
4 106.19 300 105.46 1000 69.95
7 109.37 1500 72.36

2000 90.63
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of  H2 and  O2 in the reactions occurring at the anode and 
cathode and decreasing the sedimentation ability of the 
sludge. However, an increase in anode dissolution increases 
sludge formation during the electrolysis period, resulting in 
an additional secondary treatment cost (Ling et al. 2022).

Technoeconomic analysis of EF systems shows that raw 
materials have the highest share in total costs compared to 
electricity costs for highly efficient anodic materials and het-
erogeneous catalysts such as Fe, Ni, Pd, Pt and Ag, which 
can be found in all three phases of matter. Economic cost is 
a strong limiting parameter for large-scale implementation 
of EF systems. To overcome this limitation, the EF method 
should be highly competitive in terms of cost compared 
to conventional wastewater treatment methods currently 
available (Popat et al. 2019). Since EF has the ability to 
completely oxidize for wastewater treatment, it seems more 
economically logical to combine other low-cost alternative 
treatment systems such as biochemical treatment for leachate 
treatment. Economic costs in EF systems can be measured in 
terms of expenditure and operating costs. Because each type 
of EF system has a variety of reactor designs and optimal 
operating factors, the overall process cost can vary greatly. 
Close attention should be paid to the economic evaluation 
of energy consumption, which represents the largest share of 
the total operating cost of the EF system, despite the differ-
ent cost-inducing parameters. Other costs such as electrode 
material, electrical energy and chemical consumption, main-
tenance and labour costs are considered to be a part of the 
total operating cost (Varank et al. 2018; Ismail et al. 2021; 
Shokri and Fard 2022). In the literature, chemical material 
has been measured according to electrode material ($/kg) 
and electrical energy ($/kWh) costs (Kobya et al. 2009).

The operating cost was determined using Eq. 21 (results 
not shown here).

In this equation,  Cenergy is the energy consumption in EF 
processes (kWh/m3),  Celectrode is the amount of solute alu-
minium or ferrous metal electrode in the EF reactor (kg elec-
trode/m3 of treated leachate water), and  CH2O2 represents 
the amount of chemical consumed in the EF process.

When evaluated in terms of operating costs, it has been 
determined that in terms of treated leachate ($/m3), in high-
current-density conditions, energy consumption increases 
while the removal efficiency does not change much. In order 
not to increase the cost of energy, the current value to be 
used in the system should be well determined. Experimental 
studies examining the effect of current density on operat-
ing cost, stirring speed 250 rpm, current density 50–300 A/
m2, electrolysis time 30 min, pH 3 and  H2O2 concentration 
500 mg/L have been carried out under initial conditions. 

(21)
Operating Cost

(

$∕m3kg
)

= 0, 06C energy + 0, 6C electrode

+ 1, 0034 CH2O2

When examined in terms of cost and removal efficiencies, it 
has been determined that 150 A/m2 current density values 
are more economical than other current density values. In 
addition, as the current density increases, energy consump-
tion and operating costs also increase (Wang et al. 2020). 
The lower value of current density requires longer time for 
pollutant removal, which requires larger facilities and operat-
ing costs. In contrast, higher value of current density causes 
energy wastage due to partial electrical energy heating and 
increases power consumption and operating costs (Atmaca 
2009; Sahinkaya 2013). The application of significant cur-
rent density can significantly increase process energy con-
sumption with a negligible increase in system performance. 
Therefore, current density should be operated at an opti-
mum level to maximize pollutant removal efficiency with 
minimum power consumption. As the addition of chemical 
substance increases, the operating cost increases in direct 
proportion. Similar results were confirmed by Alavi et al. 
(2019), Rouidi et al. (2020), Asaithambi et al. (2020) and 
Yu et al. (2023). Asaithambi et al. (2020), in their study on 
the removal of COD from landfill leachate wastewater using 
EAOPs and determination of power consumption, empha-
sized that the percentage of COD removal increased from 
58.50 to 97% when the  H2O2 concentration was increased 
from 75 to 300 mg/L. However, when the  H2O2 concentra-
tion was increased to 450 mg/L, COD removal has fallen 
percentage from 97 to 80.50% and the power consumption 
linearly from 4 to 2.45 kWh/m3. This is because at low  H2O2 
concentration, COD removal is very slow due to insufficient 
radical ·OH production. The increase in  H2O2 concentration 
increased the COD removal with the formation of a larger 
amount ·OH. Increasing the COD concentration further, it 
has reduced the %COD removal as well as the power con-
sumption by half at the appropriate reaction times. How-
ever, it was reported that % COD removal was not observed 
significantly at high  H2O2 concentrations. This is due to the 
recombination of hydroxyl radicals, the scavenging effect 
of  H2O2 and the inhibition of iron corrosion by  H2O2, as 
described previously. The hydroperoxyl radical (·HO2) pro-
duced from hydrogen peroxide decomposition is a weak 
oxidant compared to ·OH. In addition, excessive use of 
 H2O2 will also interfere with COD measurement since the 
remaining amounts of  H2O2 can deplete  K2Cr2O7 and sig-
nificantly increase COD levels (Yazdanbakhsh et al. 2015; 
He and Zhou 2017). For this reason, considering the removal 
efficiency, 500 mg/L  H2O2 concentration is seen as the most 
suitable value.

Reaction time plays an important role in electrocoagula-
tion. Due to the increased energy consumption and operat-
ing cost, there must be sufficient electrolysis time for the 
reaction to occur. As the electrolysis time increases, so do 
the mixing process, current flow and anode dissolution. At 
the appropriate electrolysis time, more significant amount 
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of hydroxyl and metal ions, which act as coagulants, will 
be produced from the electrodes and thus the removal per-
formance will be improved (Ling et al. 2022). This situa-
tion may explain the fact that in the longer reaction time, 
 H2O2 produces a large amount of hydrogen peroxide, which 
causes spontaneous decomposition into oxygen and water 
and recombination of OH· radicals. Thus, the concentra-
tion of hydroxyl radicals and, accordingly, their removal 
efficiency decrease (Thirugnanasambandham et al. 2015). 
In the experimental study, in which the effect of the elec-
trolysis time on the operating cost was evaluated, the experi-
ments were carried out by changing the electrolysis time in 
the range of 2.5–80 min under optimum conditions (pH: 3, 
current density: 150 A/m2,  H2O2 concentration: 500 mg/L 
and 250 rpm mixing speed). Considering the removal effi-
ciencies in the EF process, the highest removal values were 
reached in 10 min of electrolysis time.

Comparison of COD and AOX removal from leachate 
in different process

A brief summary of the studies on landfill leachate 
removal by advanced oxidation processes (EAOPs) such 
as Fenton (F) and electro-Fenton (EF) has been presented 
in Table 4. The current results in the literature on pollutant 
removals and energy consumption under different systems 
are presented in the table. As can be seen, all relevant pro-
cesses show the result that it can efficiently remove organ-
ics from leachate with COD removal ranging from 57 to 
89%. For example, it has been highlighted that successful 
results were obtained in the removal of organic materi-
als from BorjChakir (Tunisia) landfill leachate with the 
EF process. Experimental design methodology has been 
used to determine the optimal operating conditions for effi-
cient mineralization of organic matter in landfill leachate. 
In the most optimal conditions (I = 1000 mA, purifica-
tion time = 8 h and pH = 3), 78% COD removal has been 
achieved. Based on the experimental results obtained, the 
authors emphasized that the EF process is a viable envi-
ronmentally friendly technology for the efficient treatment 
of landfill leachate and can be generalized to wastewater 
treatment (Trabelsi et al. 2012). Khajouei et al. (2019) 
used response surface methodology in their study on the 
treatment of composite leachate and they have done opti-
mized the EF process based on the D-optimal algorithm. 
Removal efficiencies of 68.4, 78.7 and 99.3%, respectively, 
were obtained for COD, BOD and  PO4-P under optimum 
conditions (pH = 3,  [H2O2] = 0.25 M, electric current = 3A 
and electrolysis time = 100 min). A decrease in the biodeg-
radability index of  BOD5/COD from 0.60 to 0.31 indicated 
that most of the organic matter in the compost leachate 
was biodegradable and oxidized by the EF process. The 

authors concluded that the EF process can be considered 
a promising and cost-effective alternative to by the Fenton 
process in treating compost leachate. Ling et al. (2022), in 
their study, compared the efficiency of electrocoagulation 
(EC) and electro-Fenton (EF) processes for treatment of 
landfill leachate. The influence of operating parameters 
including initial pH, contact time and a COD/H2O2 mass 
ratio for COD and colour removal from leachate has inves-
tigated. Under optimum pH (6) and reaction time value 
(17.5 min) in EC process, 66.2 and 94.4% COD and colour 
removal were obtained in EC treatment, respectively. In 
the EF process, 69.8% colour and 88.1% COD removal 
(COD:H2O2 9.5) were obtained with optimum pH (9) 
value and electrolysis time (6.7 min). According to the 
results obtained, higher treatment efficiency of the EF 
process than the EC process was obtained. In addition, 
it was determined that 46.7% less sludge was produced 
in the EF process under optimal conditions compared to 
the EC process. The results of the study showed that the 
treatment operating cost of the EF process is 35.8% lower 
than the EC process. It has been emphasized that the EF 
system is an energy efficient process for the removal of 
waste leachate, due to its many advantages. In Crispim 
et al. (2022), they have researched the feasibility of elec-
tro-Fenton (EF) and photoelectro-Fenton (PEF) processes 
as alternatives for the treatment of local landfill leachate 
with high organic content (COD = 2684.7 mg/L). For this 
purpose, a continuous flow reactor was designed using 
boron doped diamond anode (Nb/BDD) and carbon felt 
cathode (FC) electrodes. The effects of current density 
(30, 60 and 90 mA/cm2) and UV radiation wavelength 
(UVA and UVC) have been investigated to evaluate the 
energy consumption and treatment efficiency between the 
two processes. The best efficiency for removing organic 
matter (COD) has been found to be 66, 68 and 89% for 
EF, PEF UVA and PEF UVC, respectively, at 4-h elec-
trolysis time and a current density of 90 mA/cm2. In the 
same conditions, the energy consumption was obtained as 
19.41, 17.61 and 17.59 kWh kg/COD. According to the 
results of the study, it has been reported that the percent-
age of COD removal occurred in the order of EF < PEF 
UVA < PEF UVC.

Considering the response relationship between treat-
ment cost and treatment effect, including reducing the pol-
lution load and toxicity of leachate, it is clearly understood 
from studies that some electrochemical AOP techniques 
need to be combined to further improve the mineraliza-
tion rate of landfill leachate and reduce unnecessary reac-
tion time. In addition, the optimization of stable operating 
parameters and its combination with other technologies to 
achieve the desired improvement effect requires further 
evaluation.
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Conclusion

One of the main problems in solid waste landfills is the 
remediation and management of leachate, which produces 
large quantities of organic matter. If leachate is discharged 
directly into the receiving environment or treated unsys-
tematically, it can cause significant risks to health and the 
environment. There are many factors affecting the treatment 
efficiency of the EF technique. Therefore, experimental 
variables such as reaction time, pH, current density,  H2O2 
concentration and feed mode should be correctly selected. 
In this study, the applicability of EF system for the treat-
ment of landfill leachate was investigated and the effect of 
operating parameters such as pH, current density, hydro-
gen peroxide concentration, COD, TOC and AOX removal 
efficiencies was evaluated in relation to operating cost and 
sludge amount. The results showed that the EF technique 
performs well in the treatment of landfill leachate. Based on 
the findings obtained in this study, the optimal variables of 
EF technique for treatment of landfill leachate were deter-
mined as pH 3, current density 150 A/m2,  H2O2 concentra-
tion 500 mg/L  (H2O2:COD 4.4) and electrolysis time 10 min. 
Under these conditions, the COD, TOC and AOX removal 
efficiencies 71.7, 90.87 and 97.4%, respectively, have been 
obtained. The results obtained show that the leachate meets 
the discharge standards for Turkey in terms of the investi-
gated parameters. In addition, within the scope of this study, 
the collapsibility and operating costs of the sludge formed as 
a result of the EF process were also investigated and it was 
determined that the sludge formed as a result of the EF pro-
cess had good settling properties. The sedimentation prop-
erties of the sludge formed after treatment (sludge volumes 
after 30 min. of settling: V69.23) are quite good. However, it 
is possible to further improve the settling volume. Thus, the 
disposal costs of the waste sludge produced by the EF tech-
nique will be significantly reduced. Electro-Fenton process 
has many advantages such as less sludge production, shorter 
treatment time, lower operating costs and continuous  Fe2+ 
regeneration. Considering these advantages, it appears to be 
an economically and environmentally viable, which can be 
considered as promising technology when compared to other 
advanced oxidation processes. However, these data alone 
are not sufficient for an effective evaluation of the economic 
feasibility of the process. Therefore, future research should 
focus on the economic cost of the electro-Fenton process, 
such as reactor type, electrode used, energy and chemical 
expenditure costs, depending largely on suitable processes 
through which higher removal efficiencies will be achieved.
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