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Abstract: Magnetic granite (MG), a new and low-cost adsorbent, was prepared by the chemical
co-precipitation of Fe2+ and Fe3+ using granite (G), which is a magmatic rock type. The adsorption
of the Reactive Black 5 (RB5) dye from aqueous solutions on Fe3O4-modified granite was examined
in a batch system. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy
(SEM), energy-dispersive X-ray (EDX), X-ray fluorescence spectrometry (XRF), X-ray diffractometry
(XRD), N2 adsorption–desorption, vibrating-sample magnetometry (VSM), and point-of-zero charge
(pHpzc) analysis were used to characterize the prepared MG. Magnetic granite displayed significant
magnetization and could be easily separated using external magnets. The maximum adsorption
capacity was 29.85 mg/g at 298 K. According to kinetic and isothermal examinations, the pseudo-
second-order model and Langmuir isothermal adsorption were the best fit for adsorption. It was
found that the enthalpy change ∆H (kJ/mol) was −31.76, and the entropy change ∆S (kJ/mol) was
0.096 for a temperature change of 298–330 K. The ∆G◦ (kJ/mol) value was negative at all temperatures
(298 K, −2.86 kJ/mol; 303 K, −2.85 kJ/mol and 313 K, −1.50 kJ/mol), indicating that the adsorption
of RB5 on MG was spontaneous.

Keywords: Reactive Black 5; magnetic granite; adsorption; Fe3O4; chemical co-precipitation

1. Introduction

The dye content of wastewater from the paper, pharmaceutical, plastic, leather, and,
especially, textile industries is very considerable. More than 1000 tons of dyes—45% of
which are reactive dyes—are discharged into natural waters by the effluents of various
enterprises each year [1]. Dyes take an important place in these sectors. Dyes belong to
the class of aromatic and heterocyclic compounds with azo bonds (-N=N-) and exhibit
toxic, mutagenic, and even carcinogenic properties. They cause considerable damage to the
central nervous and digestive systems and the liver [2]. The discharge of untreated wastew-
ater with high dye contents into the environment where living organisms are present is
among the main sources of water pollution [3]. The above-mentioned negative properties
impact the life system in nature, including plants, animals, and humans. Therefore, decol-
orizing wastewater from industries in which dyes are used is also important for the whole
ecosystem [4].

Reactive Black 5 is a diazo acidic reactive dye known as Remazol Black B in the
industry (Table 1). Reactive dyes are widely used due to their low cost, bright color, and the
property of providing effective coloring by binding to materials through covalent bonds.
Studies reported that prolonged exposure to RB5 may cause skin rashes, bladder cancer,
chromosomal abnormalities, respiratory and kidney failure, and asthma [5–7]. Furthermore,
reactive dyes are highly soluble in water. Therefore, it is challenging to remove them from
wastewater using conventional methods [8].

Numerous methods have been reported in the literature for dye removal, such as
electrocoagulation [9], the Fenton [10,11] and photocatalytic reaction [12–15], and ad-
sorption [16,17]. Adsorption is preferred among the said methods because of its simple
application, low cost, and reproducibility [16,18].
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Table 1. The physical and chemical properties of the RB5 dye.

Chemical Name Reactive Black 5 (Remazol Black B)

Chemical formula C26H21N5Na4O19S6
Molecular weight 991.82 g/mol

Maximum absorbance 597 nm
Ionic structure Anionic dye

Water solubility Highly soluble

Molecular structure

Processes 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

Table 1. The physical and chemical properties of the RB5 dye. 

Chemical Name Reactive Black 5 (Remazol Black B)  
Chemical formula C26H21N5Na4O19S6 
Molecular weight 991.82 g/mol 

Maximum absorbance  597 nm 
Ionic structure Anionic dye 

Water solubility Highly soluble 

Molecular structure 

 

 
 

Numerous methods have been reported in the literature for dye removal, such as 
electrocoagulation [9], the Fenton [10,11] and photocatalytic reaction [12–15], and adsorp-
tion [16,17]. Adsorption is preferred among the said methods because of its simple appli-
cation, low cost, and reproducibility [16,18]. 

However, using the adsorption method, the efficient separation of adsorbents from 
water is difficult and may take a long time [19]. Fe3O4 magnetic particles are characterized 
by a large surface area and their easy separation from reaction media. The large surface 
area, biocompatibility, non-toxicity, and easy synthesis of Fe3O4 enable its use in various 
fields [20]. Magnetic particles and composite materials made with magnetic particles are 
considered potential materials for the removal of pollutants from aqueous media [21–25]. 
Magnetic materials are preferred to centrifugation or filtration separation methods as they 
are more effective, with respect to the time and the energy required, in adsorption pro-
cesses [26]. After adsorption, magnetic materials containing the adsorbed compounds are 
separated by a magnet. This separation method is reported to be faster, safer, and more 
efficient than centrifugation and filtration [27–29]. 

Some studies were conducted on the removal of the RB5 dye from aqueous media 
using various adsorbents. Low-cost agricultural products [30–33], pumice [34], activated 
carbon [35], zeolite [8,36], clay [37], and various composite materials [38–40] were used 
for RB5 removal. 

The present study used granite, a magmatic rock type, as the basic material consti-
tuting the adsorbent’s structure [41]. Granite is a rock type comprising quartz and alkali 
feldspar from 20% to 60% [42]. To the best of our knowledge, no study in the literature 
has examined the use of granite or magnetic granite as an adsorbent. Granite was mag-
netized and used for RB5 removal. On the basis of its magnetic properties, it was separated 
from the environment quickly and without energy consumption after the process. The 
results showed that MG could be utilized as a novel alternative adsorbent in wastewater 
treatment. 

2. Materials and Methods 
2.1. Materials 

However, using the adsorption method, the efficient separation of adsorbents from
water is difficult and may take a long time [19]. Fe3O4 magnetic particles are characterized
by a large surface area and their easy separation from reaction media. The large surface
area, biocompatibility, non-toxicity, and easy synthesis of Fe3O4 enable its use in various
fields [20]. Magnetic particles and composite materials made with magnetic particles are
considered potential materials for the removal of pollutants from aqueous media [21–25].
Magnetic materials are preferred to centrifugation or filtration separation methods as
they are more effective, with respect to the time and the energy required, in adsorption
processes [26]. After adsorption, magnetic materials containing the adsorbed compounds
are separated by a magnet. This separation method is reported to be faster, safer, and more
efficient than centrifugation and filtration [27–29].

Some studies were conducted on the removal of the RB5 dye from aqueous media
using various adsorbents. Low-cost agricultural products [30–33], pumice [34], activated
carbon [35], zeolite [8,36], clay [37], and various composite materials [38–40] were used for
RB5 removal.

The present study used granite, a magmatic rock type, as the basic material constituting
the adsorbent’s structure [41]. Granite is a rock type comprising quartz and alkali feldspar
from 20% to 60% [42]. To the best of our knowledge, no study in the literature has examined
the use of granite or magnetic granite as an adsorbent. Granite was magnetized and
used for RB5 removal. On the basis of its magnetic properties, it was separated from
the environment quickly and without energy consumption after the process. The results
showed that MG could be utilized as a novel alternative adsorbent in wastewater treatment.

2. Materials and Methods
2.1. Materials

The granite used in the study was obtained from the Davulalan region, Sivas. RB5 dye,
FeSO4·7H2O, FeCl3, and NH4OH were acquired from Sigma-Aldrich (St. Louis, MO, USA).

2.2. RB5 Stock Solution Preparation

The RB5 dye was utilized without any prior preparation. The stock solution used in
the study was prepared at 1000 mg/L and diluted to the desired concentrations. The pH of
the RB5 solutions was adjusted using 0.1 M NaOH and 0.1 M HCl.
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2.3. Synthesis of Magnetic Granite (MG)

Magnetic granite was prepared by the co-precipitation method. FeCl3 and FeSO4·7H2O
were used, and the Fe2+/Fe3+ mole ratio was adjusted to 1/2. The solution prepared with
Fe2+ and Fe3+ (1:1 volume ratio) was stirred at 80 ◦C until homogenization. Then, 2.5 g
of granite was added to the Fe2+ and Fe3+ solution, stirring at 80 ◦C for 2 h. In the end,
25% NH4OH solution was slowly added to the mixture. The solution’s color turned
black, indicating that magnetic particles had formed. The residual ammonium ions were
eliminated from the mixture by repeatedly washing it with distilled water. The washed
magnetic granite particles were dried at 70 ◦C [43]. Figure 1 shows the synthesized MG.
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2.4. Granite and Magnetic Granite Characterization

Granite and magnetic granite were characterized by FTIR, SEM, EDX, XRF, XRD, N2
adsorption–desorption, VSM, and pHpzc.

The morphology of granite and magnetic granite was investigated using SEM and EDX
for qualitative chemical analysis. For the purpose of identifying potential functional groups
in the structures of granite and magnetic granite, FT-IR analysis in the 400–4000 cm−1 range
was carried out. The elemental analyses of granite and magnetic granite were conducted
by XRF. The crystal structure of granite and magnetic granite was determined by XRD.
To determine the surface and pore characteristics, N2 adsorption–desorption analysis
was performed. The VSM analysis was conducted to identify the magnetic properties of
magnetic granite.

2.5. RB5 Removal

A 100 ppm RB5 stock solution was prepared by dissolving 0.1 g of RB5 dye in 1 L
of distilled water. Various parameters, such as pH (3.0–7.0), initial dye concentration
(20–200 mg/L), adsorbent dosage (0.25–5 g/L), contact time (0–300 min), and temperature
(25–40 ◦C), were examined. The “one-factor-at-a-time method” was employed to design
the experimental system. The best parameter conditions were determined sequentially.
Batch system experiments were conducted in a 50 mL volume. RB5 concentration was
measured by determining the absorbance at 597 nm with a UV–visible spectrophotome-
ter (Merck Spectroquant Pharo 300, KGaA, Darmstadt, Germany). The % removal effi-
ciency and the adsorption capacity were determined according to the following equations
(Equations (1) and (2)):

Removal efficiency (%) = [(Co − Ce)/Co] × 100 (1)

qe =
(Co − Ce)V

m
(2)
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Co refers to the initial concentration (mg/L), Ce is the concentration of the substance
remaining unadsorbed at equilibrium (mg/L), V denotes the solution volume (L), and m
represents the adsorbent dosage (g).

2.6. Reusability

We added 0.05 g of MG to 200 mg/L of RB5 solution and submitted it to the dye
adsorption process for 120 min at ambient temperature (pH: 4.0). After this process, the
desorption process with 0.1 M NaOH was applied to RB5-adsorbed MG to determine the
desorption efficiency. After rinsing with distilled water to remove any remaining NaOH
MG was dried in an oven. These processes were repeated five times, and the regeneration
efficiency was calculated by Equation (3).

Regeneration efficiency = (Amount of the dye desorbed/Amount of the dye adsorbed) × 100 (3)

2.7. Mathematical Modeling of the Adsorption System
2.7.1. Adsorption Isotherms

The monolayer or multilayer adsorption of RB5 on MG was analyzed through the use
of adsorption isotherms. The Langmuir, Freundlich, and Temkin isotherm models were
used for the description of the adsorption system (Table 2).

Table 2. Adsorption isotherms and equations.

Isotherm Model Equation Reference

Langmuir Isotherm 1
qe

= 1
qm

+ 1
b.qm

1
Ce

[44]

Freundlich Isotherm ln qe = ln KF + 1
n ln Ce [45]

Temkin Isotherm qe =
RT
bT

ln(ACe) [46]

2.7.2. Adsorption Kinetics

The adsorption kinetic model explained the adsorption mechanism, diffusion phe-
nomena, and the connection between equilibrium time and adsorption capacity (Table 3).

Table 3. Kinetic models and equations.

Kinetic Model Equation Reference

Pseudo-first-order
kinetic model ln(qe − qt) = ln qe − k1t [47]

Pseudo-second-order
kinetic model

t
qt

= 1
k2qe2 +

1
qe

t [48,49]

Intraparticle diffusion qt = kdt1/2 + C [50]

2.7.3. Adsorption Thermodynamics

The Gibbs free energy change (∆G◦), enthalpy change (∆H◦), and entropy change
(∆S◦) of RB5 adsorption were evaluated. The ∆G◦ value is essential since it indicates
the spontaneity of a chemical reaction, which can be computed in the following way
(Equation (4)):

∆G◦ = −RTlnKc (4)

where Kc ((amount of RB5 in the adsorbent)/(amount of RB5 in the solution)) represents
the distribution coefficient.

The enthalpy change (∆H) and entropy change (∆S) were estimated from the equation
below (Equation (5)):

ln Kc =
∆S
R

− ∆H
RT

(5)
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3. Results
3.1. Characterization of Granite and Magnetic Granite
3.1.1. FTIR Results

A FTIR analysis was conducted with the objective of determining the functional groups
in the material structure and explaining the interaction between the materials.

In the FTIR spectrum of granite (Figure 2), the bands at 3691 and 3615 cm−1 originate
from the OH stretching of water in the layers of granite [51]. The peaks at 1797 cm−1 and
1442 cm−1 correspond to H-O-H bending vibrations and organic–inorganic hybrid bond
peaks, respectively [52]. The stretching vibration of the Si-O-Si and Al-O-Si groups of alumi-
nosilicate is related to the important peak at 1024 cm−1 in the IR spectra of granite [52,53].
This absorption band also indicates the presence of albite [26]. The medium band at
774 cm−1 is attributed to the Si-O-Si bond’s tetrahedral bending vibration; this peak is
representative of crystalline quartz [54]. The ring vibrations of framework silicates are
responsible for the four extremely weak bands between 538 cm−1 and 700 cm−1 [53].
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Figure 2. FTIR spectra of granite and magnetic granite.

Upon comparing the FTIR spectra of granite and magnetic granite, it was seen that
the wave number did not change in many peaks. However, the transmittance values of the
peaks in the magnetic granite spectrum were found to increase (Figure 2). These results
showed that the internal structure of granite did not change following modification with
iron [55–57].

The absorption peak of magnetic granite at ~550 cm−1 is the characteristic band of
Fe-O stretching vibrations in Fe3O4 particles. It is possible to find the specific vibrations
of Fe-O bonds around 460 cm−1 and 570 cm−1. When the granite and magnetic granite
peaks were compared, we observed that some peaks were shifted to new values while
other peaks disappeared [56–58]. In fact, the peaks at 643 cm−1 and 783 cm−1 disappeared.
These changes confirmed the modification with Fe3O4.

3.1.2. SEM-EDX Results

Figure 3 presents the SEM images of granite, magnetic granite, and magnetic granite
after RB5 adsorption. The SEM image of granite shows that it had an agglomerated
structure which did not display a homogeneous distribution. It was observed that spherical
structures were formed when Fe3O4 was added to granite. A similar spherical structure
was also observed in a kaolin-based magnetic zeolite [59]. After adsorption, the spherical
structure decreased, and the gaps on the surface disappeared.
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Figure 3. SEM images of granite (a), magnetic granite after RB5 adsorption (b), and magnetic
granite (c,d).

Figure 4 shows the EDX analysis results of granite, MG, and RB5-adsorbed MG. In the
EDX spectrum of granite, it was observed that the structure of granite mainly contained
55.43% O, 9.77% Al, and 23.72% Si as well as low amounts of Na, Mg, K, Ca, and Fe. The
EDX spectrum analysis of MG, which was imparted magnetic properties by loading iron
to granite, determined that 60.94% Fe was present. C, N, and S in the EDX spectrum of
MG after adsorption derived from the RB5 dye, indicating that the RB5 dye was adsorbed
by MG.
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tion (c).

3.1.3. XRF Results

An XRF analysis was carried out for the purpose of revealing the elemental composi-
tion of granite and magnetic granite (Table 4).

Table 4. XRF results of granite and magnetic granite.

Element (%)

Mg Al Si Ti V Mn Fe Zn Zr Nb Mo Pb Bi

G 0.53 21.97 74.775 0.477 0.151 0.285 1.65 0.015 0.047 0.012 0.003 0.032 0.053
MG 0.15 5.14 16.97 0.111 0.03 0.16 77.41 0.01 0.02 0.005 0.002 0.032 0.02

The XRF analysis of granite showed that its elemental composition mainly consisted
of Si (74.77%) and Al (21.97%). The granite structure contained a very low amount of Fe
(1.65%). The percentage contents of the other elements in the table were determined as
<1%.

In the XRF analysis of magnetic granite, the Fe (77.41%) ratio increased due to modifi-
cation, whereas the Si (16.97%) and Al (5.14%) percentages decreased.

The elemental composition of granite and magnetic granite was determined by EDX
and XRF analyses. In XRF analysis, analyzing elements with atomic numbers less than 11
is impossible. Therefore, the element “O” is not included in the XRF analysis results, which
causes the percentages of elements in EDX and XRF analyses to differ.

Nevertheless, the EDX and XRF results showed a high proportion of Al and Si in the
structure of granite and an increased proportion of Fe in the structure of magnetic granite,
which was similar in the two analyses.

3.1.4. XRD Results

An XRD analysis was performed at 2θ = 0–65◦ to determine the crystal phase and
structural features of granite and magnetic granite, and the results are presented in Figure 5.
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The sharp peaks at 2θ = 20.9◦ and 26.54◦ are the characteristic peaks belonging to quartz
in the granite structure [60]. The peak positions in the XRD pattern of granite were in line
with the literature [60–63]. The peaks at 2θ = 30.26◦, 35.6◦, 43.32◦, 57.36◦, and 62.94◦ in
the XRD pattern of iron-modified granite confirmed the addition of Fe3O4 to the granite
structure [64].
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3.1.5. Adsorption–Desorption Analysis

Table 5 reports the surface area and pore sizes of granite and magnetic granite. Accord-
ing to the N2 adsorption–desorption characterization results, the surface area of granite
modified with Fe3O4 loading was determined by the BET and BJH methods. The surface
area of magnetic granite was larger compared to that of granite. While the surface area of
granite was 0.46 m2/g, the surface area after iron loading was 19.12 m2/g. The pore size
measurement results showed that both materials were mesoporous (d = 2–50 nm).
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Table 5. N2 adsorption–desorption results of granite and magnetic granite.

Granite Magnetic Granite

Surface area (m2/g)

Single-point surface area at P/Po 0.4532 m2/g 19.0604 m2/g
BET Surface Area 0.4638 m2/g 19.1211 m2/g
BJH adsorption cumulative surface area of pores with
width between 17.000 Å and 3000.000 Å 0.1485 m2/g 4.006 m2/g

Pore volume (cm3/g)
Single-point adsorption total pore volume of pores 0.000287 cm3/g 0.013088 cm3/g
BJH Adsorption cumulative volume of pores with
width between 17.000 Å and 3000.000 Å 0.000099 cm3/g 0.004697 cm3/g

Pore size (Å) BJH Adsorption average pore width (4V/A) 39.137 Å 46.901 Å

The increase in the specific surface area with the addition of Fe3O4 could be attributed
to the partial penetration of iron oxide into the granite layers, which led to the formation of
new layers, increasing both the surface area and the interlayer porosity. These results agree
with the studies reporting that the modification of a support with Fe3O4 increased surface
area and pore size [56,65,66].

3.1.6. VSM Results

The magnetic characteristics of granite loaded with Fe3O4 were examined with a
vibrating sample magnetometer operating between 0 and 15 K. The internal hysteresis loop
of magnetic granite demonstrated an “S”-shaped curve at magnetic ambient temperature
(Figure 6). The saturation magnetization (Ms) value of iron-modified granite was calculated
as 46.04 emu/g, with a magnetization value of 3.5314 emu for 0.0767 g.
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Figure 6. VSM curve of magnetic granite.

A study in the literature reported the Ms value of Fe3O4 nanoparticles and Fe3O4
in bulk form as 53.81 emu/g and 92 emu/g, respectively [67]. Another study found
the MS value of Fe3O4 nanoparticles to be 59 emu/g. It was reported that when Fe3O4
nanoparticles were coated with chitosan, the MS value was 51.4 emu/g, and the polymer
coating process reduced magnetization [68].

The VSM analysis determined the maximum field for iron-modified granite as 25,000 Oe,
coercivity (Hci) as 24,515 Oe, and permanence (Mr) as 0.13901 emu. These values confirmed
that iron-modified zeolite has adequate magnetic features to be attracted by a permanent
magnet [69]. When the external magnetic field was removed, the particles were redispersed
and reinstated [70].
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3.2. Adsorption Studies
3.2.1. Effect of the Initial pH and of the pHPZC of MG

A solution’s pH is among the most significant parameters that impact adsorption,
since it influences the degree of ionization, the surface charge of the adsorbent, and the
structure of the dye to be removed. The effect of pH on the removal of RB5 dye from
MG was studied in the pH range from 3 to 7, keeping constant the dye concentration
(50 mg/L), the adsorbent dosage (1.5 g/L), the temperature (23 ◦C), and the contact time
(240 min). The results obtained are presented in Figure 7. The adsorption capacity of
the MG adsorbent was 25.99 mg/g and 25.53 mg/g at pH 3.0 and 4.0, respectively. The
adsorption capacity decreased with an increasing pH of the solution. The lowest adsorption
efficiency was 0.2 mg/g at pH 6.98, which was the pH value of the solution. Dye removal
was favored at pH values of 3 and 4, and the subsequent experiments were performed at
pH 4.0. Electrostatic attraction is stronger in acidic solutions due to the anionic SO−

4 centers
in the structure of RB5, which leads to higher adsorption efficiency at low pH values [71].
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Figure 7. pHPZC for MG (a) and the impact of pH on the adsorption of RB5 on MG (b) (RB5
concentration: 50 mg/L, adsorbent dosage: 1.5 g/L, T: 23 ◦C, t: 240 min).

The pHPZC was determined to better define the adsorption mechanism. The surface
charge of an adsorbent is positive at pH < pHPZC and negative at pH > pHPZC [72–76]. The
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pHPZC value of the MG adsorbent was found to be 6.42, and the MG surface charge was
positive at pH < 6.42 and provided the maximum adsorption of RB5 dye, an anionic dye, at
pH 4.0.

3.2.2. Effect of the Adsorbent Dosage

The effect of the adsorbent dosage on dye removal was studied in the range of
0.25–5 g/L, keeping constant the dye concentration (50 mg/L), the pH (4.0), the tem-
perature (23 ◦C), and the contact time (240 min). Figure 8 shows the results of the removal
of RB5 with MG. The removal percentage of RB5 dye increased with an increasing adsorbent
dosage. The removal efficiency was determined to be 22.42% and 88.09% at 0.25 g/L and
5 g/L, respectively. Increasing the adsorbent dosage from 2.5 g/L to 5 g/L did not change
the removal efficiency. The increased removal efficiency is also related to an increased
number of active centers involved in the removal as the adsorbent dosage increases [77].
Figure 8 shows a decrease in the adsorption capacity of MG with the increase in the ad-
sorbent amount. The adsorption capacity was found to be 45.93 mg/g and 9.02 mg/g
at 0.25 g/L and 5 g/L, respectively. This explained why the unit adsorption capacity
decreased with the increasing adsorbent dosage, since some areas on the adsorbent surface
remained empty [78,79]. For the RB5 removal with MG, 2.5 g/L was determined as the
adsorbent dosage, and further experiments were conducted with this amount.
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3.2.3. Effect of the Dye Concentration and Isotherm Modeling

The initial dye concentration in the removal of RB5 dye with MG was investigated at
pH 4.0, with contact time of 240 min and 2.5 g/L of adsorbent. The RB5 concentration was
studied in the 60–200 mg/L range. The calculated adsorption capacity was 17, 22, 23, 28,
and 29 mg/g at initial dye concentrations of 60, 80, 100, 150, and 200 mg/L, respectively.
The adsorption capacity increased with the increasing RB5 concentration, but no significant
difference was observed in the presence of 150 and 200 mg/L contaminant concentrations
(Figure 9). The saturation of the adsorption centers explains why the adsorption capacity
does not change significantly at high concentrations [80]. The increasing dye concentration
increased the required interaction forces by overcoming the resistance related to mass
transfer between MG and RB5. Accordingly, a higher adsorption capacity was obtained [81].
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240 min).

The equilibrium data for RB5 removal with MG were characterized by the Langmuir,
Freundlich, and Temkin isotherms (Figure 10). Table 6 reports Qmax, b, and the correlation
coefficient computed from the Langmuir isotherm model, kF and 1/n, and the At and bt
constants computed from the Temkin isotherm.

Table 6. The Langmuir, Freundlich, and Temkin isotherm constants for RB5 adsorption on MG.

Isotherm Constants 298 K 303 K 313 K 323 K

Langmuir
Qmax 29.85 28.01 26.45 21.41

b 0.121 0.113 0.057 0.143
R2 0.89 0.95 0.95 0.74

Freundlich
kF 12.95 5.87 7.73 12.29

1/n 0.16 0.39 0.22 0.10
R2 0.83 0.71 0.82 0.49

Temkin
At 12.46 0.29 1.84 653.76
bt 0.64 0.23 0.61 1.51
R2 0.86 0.60 0.84 0.47
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Figure 10. Adsorption isotherms: Langmuir (a), Freundlich (b), Temkin (c).

Table 7 reports the RB5 removal results with various adsorbents. The maximum
adsorption capacity obtained at 298 K for RB5 removal with MG was 29.85 mg/g. As seen
in the table, very different results were obtained because the parameters selected in each
study were different. Table 7 allowed us to acquire an approximate idea of the results of
RB5 removal with MG.

Table 7. RB5 removal with various adsorbents.

Adsorbent qe (mg/g) Ref.

Magnetic iron oxide nanoparticles 18 [5]
ZnO–chitosan composite beads 189.44 [38]

Activated carbon (prepared from orange peel) 11.85 [82]
Brazilian pine-fruit shells (Araucaria angustifolia) 74.6 [32]

Activated carbon (prepared from Brazilian pine-fruit shells) 446.2 [32]
TiO2-G5/PET films 155.04 [83]

Acidic modification of natural stone (pumice) 10 [84]
Polyacrylamide cryogels modified with polyethyleneimine 201 [85]

Cu/natural zeolite 0.4299 [86]
Surfactant-modified zeolite 12 [8]

Fly ash 7.93 [87]
Powdered activated carbon 58.52 [87]
Pre-treated Aspergillus flavus 26.95 [88]

Magnetic granite 29.85 This study
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3.2.4. Contact Time’s Effects and Kinetic Model

To study the impact of contact time on the adsorption of RB5 dye on MG, studies
were performed at various contact times (5–300 min). Figure 11 displays the impact of the
contact time on the adsorption capacity. The qe-t graph shows an increase in the amount
adsorbed as the contact time increased. The removal efficiencies for 30, 60, and 300 min were
60%, 70%, and 74%, respectively, for a 60 mg/L RB5 concentration, whereas the removal
efficiencies for 30, 60, and 300 min were 28%, 28%, and 36%, respectively, for a 200 mg/L
RB5 concentration. Very high removal rates were reached in the first minutes due to the
high number of active sites. However, because of the decrease in and the occupancy of the
said zones and the rapid equilibrium, the dye removal gradually decreased. The reason for
this is the strong attraction force between dye molecules and adsorbent materials; intra-
particle diffusion takes place after rapid surface diffusion. Similar results were obtained for
RB5 removal using magnetic chitosan [89]. The equilibrium time for RB5 removal with MG
was determined to be 60 min.
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Figure 11. Effect of the contact time on RB5 adsorption.

Kinetic studies are essential for determining the best adsorption time of a pollutant
on an adsorbent. The most commonly used kinetic models were analyzed to determine
the kinetic parameters for RB5 dye adsorption on MG. Table 8 presents the data obtained
from the PFO, PSO, and IPD kinetic models. Upon comparing the experimental qe val-
ues obtained from the adsorption system with the calculated qe values, the system was
determined to be in accordance with the PSO kinetic model.

Table 8. Kinetic data for the adsorption of RB5 on MG.

T (K)
Co

(mg/L)
qe (exp.)
(mg/g)

Pseudo-First-Order Pseudo-Second-Order Inrtaparticle Diffusion

qe
(cal.)

(mg/g)

k1
(min−1) R2

qe
(cal.)

(mg/g)

k2
(g·mg−1

min−1)
R2

ki
(mg·g−1

min−1/2)
C R2

298

60 18.35 4.60 0.0092 0.66 18.51 0.0044 0.99 1.416 −13.1 0.72
80 22.16 7.10 0.0105 0.76 22.62 0.0046 0.99 0.644 12.69 0.81

100 23.77 7.91 0.0103 0.77 24.27 0.0040 0.99 0.679 13.56 0.85
150 25.39 8.27 0.0850 0.87 29.94 0.0017 0.98 0.969 13.00 0.93
200 28.99 9.48 0.0059 0.78 25.44 0.0077 0.99 0.571 17.94 0.85

The intraparticle diffusion model was used to analyze the adsorption mechanism
(Figure 12). The relationship between diffusion, equilibrium time, and adsorption capacity
is described by investigating the adsorption mechanism. The adsorption of RB5 on MG was
realized in two steps. In the first step, when adsorption took place, RB5 was adsorbed on
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the adsorbent surface. Most adsorption occurred in this first step, according to boundary
layer diffusion. In the second step, the process was slower, as shown by the lower slope of
the line. This step involved intraparticle diffusion. In the diffusion of RB5 on MG, boundary
layer diffusion occurred in the first 60 min, and intraparticle diffusion occurred afterward.
The equilibrium time of the adsorption system was determined to be 60 min.
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Figure 12. Intraparticle diffusion modeling of RB5 adsorbed on MG (pH: 4.0, adsorbent dosage:
2.5 g/L, T: 23 ◦C, Co: 100 mg/L).

3.2.5. Temperature’s Effects and Thermodynamic Parameters

The impact of temperature on the adsorption of RB5 on MG was studied in the
range of 23–40 ◦C with 60–200 mg/L of RB5, at pH 4.0, and 0.25 g of adsorbent. The
adsorption capacity was observed to decrease as the temperature increased (Figure 13).
At the concentration of 200 mg/L RB5, the adsorption capacity was 28.99 mg/g at 23 ◦C,
while the it decreased to 19.66 mg/g when the temperature increased to 50 ◦C. Likewise, at
the concentration of 60 mg/L RB5, the adsorption capacity was 18.35 mg/g at 23 ◦C and
decreased to 12.26 mg/g as the temperature increased to 50 ◦C. The decreased adsorption
capacity with the increasing temperature indicated that the system was exothermic.
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RB5. Table 9 shows the calculated ∆G, ∆H, and ∆S values. The negative ∆H values at all
temperatures and concentrations showed that the adsorption was exothermic. The negative
∆G values demonstrated that the adsorption was spontaneous.

Table 9. Thermodynamic parameters for RB5 adsorption with magnetic granite.

Temperature (K) ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (kJ/mol K) R2

298 −2.86
−31.76 0.096 0.90303 −2.85

313 −1.50

3.3. Regeneration

The adsorbent’s regeneration is an important factor in the efficiency and economy
of an adsorptive process. The regeneration of the used adsorbent and the reuse of the
regenerated adsorbent in adsorption systems are important from an environmental and
economic point of view. To determine the reusability of MG used in the study, 0.1 M NaOH
was used as an eluent for the regeneration process.

MG used for RB5 adsorption was oven-dried at 50 ◦C for 3 h in the regeneration
experiments. In the first cycle after regeneration, it was determined that magnetic granite
removed 85.06% of RB5 (Figure 14). In the 5th cycle, the RB5 removal rate decreased to
49.15%. The results obtained proved that MG is reusable.
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4. Conclusions

In this study, magnetic granite was synthesized using natural rock-type granite by the
chemical co-precipitation method for RB5 adsorption. The characterization results showed
the success of magnetization. Magnetic granite was found to have a larger surface area
(G: 0.4638 m2/g, MG: 19.1211 m2/g) than granite. According to the VSM results for MG,
the saturation magnetization (Ms) value was 46.04 emu/g. The presence of Fe3O4 peaks in
the XRD pattern of magnetic granite proved that Fe3O4 was added to the granite structure.
The spectra obtained from FTIR analysis also confirmed the modification with Fe3O4. In
the EDX analysis of MG, the peaks appearing after adsorption confirmed RB5 adsorption.
The adsorption of RB5 on magnetic granite showed a good fit with the Langmuir isotherm
model and the pseudo-second-order kinetic model. The adsorption of magnetic granite
was spontaneous and exothermic. This research demonstrated that magnetic granite could
be efficiently utilized for RB5 adsorption from textile wastewater.
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