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Abstract: In image classification, there are no labeled training instances for some classes, which are therefore called
unseen classes or test classes. To classify these classes, zero-shot learning (ZSL) was developed, which typically attempts
to learn a mapping from the (visual) feature space to the semantic space in which the classes are represented by a list of
semantically meaningful attributes. However, the fact that this mapping is learned without using instances of the test
classes affects the performance of ZSL, which is known as the domain shift problem. In this study, we propose to apply
the learning vector quantization (LVQ) algorithm in the semantic space once the mapping is determined. First and
foremost, this allows us to refine the prototypes of the test classes with respect to the learned mapping, which reduces
the effects of the domain shift problem. Secondly, the LVQ algorithm increases the margin of the 1-NN classifier used in
ZSL, resulting in better classification. Moreover, for this work, we consider a range of LVQ algorithms, from initial to
advanced variants, and applied them to a number of state-of-the-art ZSL methods, then obtained their LVQ extensions.
The experiments based on five ZSL benchmark datasets showed that the LVQ-empowered extensions of the ZSL methods
are superior to their original counterparts in almost all settings.

Key words: Zero-shot learning, learning vector quantization, image classification, prototype learning, large margin
classifiers

1. Introduction
When dealing with the problem of image classification/visual recognition, we usually assume that a number of
labeled training instances is available for each class of interest. However, in practice, this may not be feasible,
since collecting and annotating instances for each class results in a huge cost. Moreover, after training a classifier,
new unseen classes may emerge dynamically [1]. In fact, new plant and animal species are constantly being
discovered, making the classification of such target classes a challenge for image classification [1–3].

To address the above problem, zero-shot learning (ZSL) was developed, which was inspired by the ability
of humans to identify novel cases/classes given a high-level description about them [3, 6]. In the context of ZSL,
such descriptions are generally given as a list of semantically meaningful properties called attributes. These
can be continuous word vectors [4] or binary vectors of visual properties, such as ”has tail”, ”is red” [3]. Using
these attributes, ZSL aims to classify test/target classes for which no labeled training instances are available.
ZSL achieves this task in the following way.

ZSL assumes that the training classes, i.e. the classes whose labeled instances are available during training,
are also represented by the same set of the attributes. This results in a space known as semantic (embedding)
space that contains representations of both the test classes and training classes, i.e. their prototypes. A few
∗Correspondence: fismailoglu@cumhuriyet.edu.tr
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studies in ZSL aim to transfer images in the visual feature space and their class representations in the semantic
space to a different intermediate space though the main approach is to embed the images in the feature space
directly into the semantic space, learning only one mapping [2, 5]. Regardless of which approach is preferred,
the transformation is learned using only images of the training classes, while ZSL is concerned with classifying
images of test classes. This leads to a problem referred to as the (projection) domain shift problem [1, 5, 6, 9].

The domain shift problem also arises in domain adaptation/transfer learning, where a classifier is trained
mainly using a source (auxiliary) domain and then used to classify instances of a target domain [7]. This has led
to adopt several unsupervised domain adaptation methods to address the domain shift problem in ZSL [5, 8].
In this regard, [5] exploits unlabeled target data to create a multiview embedding space consisting of feature
views and semantic views estimated using canonical correlation analysis (CCA). Similarly, [8] uses both labeled
source and unlabeled target data to learn a projection matrix casting the learning problem as a sparse coding
problem. However, in the case of ZSL, the source domain, i.e. the training data, and the target domain, i.e. the
test data, have completely different tasks/classes. Therefore, the domain shift problem is more severe in ZSL
compared to in transfer learning. For this reason, there are also a few studies that consider the domain shift
problem solely from the perspective of ZSL [9, 10]. However, these studies require that all possible test data be
available, which is usually impossible since new classes appear dynamically.

Another issue with ZSL is that the classification task performed in the semantic space is usually based on
1-nearest neighbor search. That is, a test instance is first mapped to the semantic space, and then a test class
with the nearest prototype is assigned to the test instance. However, unlike the feature space, where the images
are represented with discriminative features, the semantic space is constructed with attributes that are not
necessarily discriminative [3, 5]. For example, although the noses of elephants and pigs have a different shape
and appearance, the attribute ”has nose” is true for both animals in the semantic space but is indistinguishable.
This also holds true when they are word vectors or they encode a linguistic context [3]. As a result, prototypes
of both training and test classes become close to each other in the semantic space, which in turn leads to the
nearest neighbor classifier having a low margin, i.e. being less confident in its predictions [11].

In this study, we propose to address the inherent problems of ZSL described above using learning vector
quantization (LVQ) algorithm as a treatment [12]. In particular, we employ the LVQ algorithm in the semantic
space which helps to refine the positions of the class representations of training and test classes so that they
are more separable. This improves the classification performance of the nearest neighbor classifier of ZSL by
increasing its margin. In fact, new positions of the test classes in the semantic space are determined in relation
to the mapping learned at the training phase. Thus, we conclude that the proposed LVQ-empowered method
helps to bridge the training and testing phases of ZSL and mitigates the domain shift problem to some extent.

Figure 1 illustrates the proposed idea based on applying the LVQ algorithm in the semantic space. Here,
W is a matrix that allows a linear mapping from the feature space into the semantic space. On the left hand
side 1a, the nearest prototype mtr

y corresponds to the class of x , an instance from the training class y , is
therefore attracted to x . On the right hand side (ii), however, the nearest prototype mte

y corresponds to a test
class y , and it is therefore repelled from x .

To determine the projection matrix, i.e. W , the literature presents a range of methods with different
motivations, including DeViSE [13], ALE [14], SJE [15], ESZSL [16], and SAE [8]. In this study, we employ
all these methods to evaluate the general usability of the proposed method for ZSL. Particularly, we aim to
understand which state-of-the-art ZSL method can benefit from the proposed method and to what extent. In
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LVQ updates mtr
y in that it is attracted to its instance. LVQ updates mte

y in that it is repelled from an in-
stance of a training class.

Figure 1. An illustration of the proposed LVQ-empowered ZSL method.

this way, we can identify which method is required to maximize the margin in the semantic space. We note
here that the proposed method is limited to linear projections from the feature space to the semantic space.
However, some nonlinear projections can also be found in the literature, including LATEM [17] and CMT [18].

The idea we propose in this paper can also be considered in the field of prototype learning, since it is
based on the LVQ algorithm [19]. LVQ starts with a small set of exemplars (prototypes) for each class and
then iteratively improves them so that the final prototypes can better represent the classes. Thus, combining
ZSL with LVQ yields better representation of classes (both training and test classes), which, in turn, leads to
a better classification performance, since in ZSL, classification is performed via class prototypes.

Below, we summarize the main contributions of this study.

• Thanks to the LVQ algorithm, we are able to refine the positions of the prototypes of the test classes
with respect to the mapping learned with the instances of the training classes. This helps to mitigate the
adverse effects of the domain shift problem that arises in ZSL.

• We make use of the LVQ algorithm to separate classes in semantic space, which is not necessarily
discriminative. This, in turn, leads to the ZSL classifier that is based on 1-nearest neighbor principle
having a high margin.

• Since the LVQ algorithm is studied under the field of prototype learning, we provide an insight into ZSL
from the perspective of prototype learning, which has not yet been extensively studied.

• For the proposed method, we study not only the initial versions of the LVQ algorithm but also some more
advanced versions, i.e. those that include an optimization process. Furthermore, we consider a number of
state-of-the-art ZSL methods in evaluating the use of LVQ for ZSL.

In the remainder of the paper, we first provide an overview of the work related to ZSL, highlighting
the milestones in its history, its relation with prototype learning, and its future. We then proceed to the
methodology section, where we formally introduce the problem of interest and explain how we approach it
using a family of LVQ algorithms. We reserve the following section for the presentation of the results of the
experiments and the related discussion section. We conclude the paper with the final section summarizing the
results and pointing out future research directions.
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2. Related work
We divide the related work into four topics. First, we provide a brief history of Zero-Shot Learning highlighting
the milestones in its history. Then, we give an overview of the projection methods used in ZSL, since the proposed
method can be viewed as a post-processing step to such projection methods. We then discuss prototype based
learning methods in ZSL, since LVQ, on which the proposed method is based, is an example of this kind. Finally,
we conclude this section with the current research on ZSL.

2.1. Milestones of ZSL
Considering ZSL a particular form of lifelong learning, where the learning is a continuous process involving a
sequence of new tasks, may date the history of ZSL to earlier times. However, the first notable study with
the name of zero-data learning was conducted in 2008 in the context of drug discovery [20]. This study was
followed by [1], where a formal framework for ZSL was provided for the first time in the literature. In this
sense, semantic (feature) space, semantic knowledge bases (i.e. class prototype vectors) and semantic output
code classifier (i.e. a classifier that infers a class label to instances via the semantic space) were introduced.
Lampert et al. proposed to train a (probabilistic) classifier for each attribute using all instances (images) from
all training classes to directly predict the attributes of the instances [3]. Later, this method was criticized with
the argument that the classifiers are trained in isolation, i.e. without considering an interaction between the
attributes [5, 14]. Furthermore, it suffers from the domain shift problem, since all classifiers are trained using
the instances of the target classes only.

In the following years, ZSL has started to be considered a subfield of transfer learning [7], realizing the
fact that the main idea in ZSL is to transfer the knowledge encapsulated in the instances of the target classes
to the task of classifying instances of the test classes [6]. More specifically, it was agreed that ZSL belongs to
heterogeneous transfer learning, as the label space of the source data (training classes), and that of the target
data (test classes) are different, which makes the learning tasks different. As a result, many studies on ZSL have
been motivated from the perspective of heterogeneous transfer learning [5, 21]. Another source of motivation
for ZSL is metric learning, which can be defined as learning a task-specific distance metric. Since classification
for test classes is determined using k-NN, a distance-based classifier, the success of ZSL is highly dependent on
the metric used. Therefore, an important part of ZSL studies is devoted to the development of metric learning
methods for ZSL [22, 23]. A common point of these studies is to define the metric learning task in such a way
that instances are forced to be closer to their class prototypes than to any other prototype in the semantic
space.

2.2. Projection methods in ZSL

Both training and test images are in the visual feature space, but their class labels are in the semantic space
formed by a set of attributes, each corresponding to a property of these classes. In the realm of ZSL, images
and their labels usually meet in the semantic space, although a few studies try to bring them together in an
intermediate space in which both are projected [24]. To embed the images from the feature space directly
into the semantic space, many projection methods have been developed. These methods can use either linear
projections [8, 13–16] or nonlinear projections [17, 18] though; linear methods predominate in the literature,
hence in our study. What these methods have in common is that they all aim to maximize the compatibility
between (training) instances and their corresponding class prototypes in the semantic space, while differing in the
form of the defined objective functions. For example, SAE [8] and ESZSL [16] include an explicit regularization
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term in their objective functions, but the rest prefers early stopping to regularize the mapping implicitly. We
leave the details of how they work to the following section.

2.3. Prototype learning for ZSL
Prototype learning refers to learning a small set of exemplars, i.e. prototypes, that can represent the entire
set of observations by capturing their typical features [25]. These prototypes can be utilized in unsupervised
learning to reduce memory requirements and/or to uncover underlying structures in the data [12]. However,
they are mainly used in supervised learning so that at least one prototype is generated for each class. As a
result, instance-based classifiers, such as the 1-NN classifier, only consider these prototypes in the testing phase
leading to a fast classification.

As mentioned earlier, in ZSL, both training and test classes are represented by a prototype in semantic
space created by a set of attributes, which makes prototype learning methods applicable to ZSL in principle.
Nevertheless, the use of these methods for ZSL remains elusive in the literature with a few exceptions. The
common approach of these few studies is that they aim at learning prototypes for the feature (visual) space,
which is more discriminative compared to the semantic space. A noticeable study in [26] proposes to learn
visual prototypes and superprototypes in a transductive setting, i.e. using objects from test classes in the
training phase. Here, the visual prototypes are learned in the visual space using instances of both training and
test classes and hence transductive, and then these prototypes are coupled with semantic prototypes, resulting
in superprototypes. This helps to align the feature space and the semantic space, as in learning a projection
matrix. Similarly, Ji et al. introduced unseen prototype learning (UPL) model, which learns visual prototypes
for test classes based on their semantic prototypes [27]. In this process, the visual prototypes are supervised
with the class average visual representations in order for them to be more discriminative. UPL then treats each
learned visual prototype as a latent classifier for the test classes.

2.4. Current research on zero-shot learning
We conclude this section with a brief note on research on ZSL published in the last two years. A recent trend in
ZSL is the development of generative models that can generate training instances for test classes based on their
semantic attributes [28]. The final classifier is then built over these synthesized instances as well as the original
instances of the training classes. For this purpose, an algorithm based on either a generative adversarial network
(GAN) or variational autoencoder is considered [29]. Another ongoing research in ZSL, including this research,
is devoted to enforcing class separability realizing that ZSL is ultimately a classification problem [30, 31]. The
study in [30] proposes to generate visual feature classifiers from the semantic attributes using a deep neural
network, which retains the visual feature discriminability intrinsically. Similarly, the study in [31] focuses on
correctly classifying hard samples of test classes that are closer to other classes to increase the generalizability
of the deep neural network with respect to the test classes.

Finally, we review recent research on ZSL from the perspective of prototype learning, since our proposed
ZSL method, has its roots in the LVQ algorithm, a type of prototype learning method. The first method worth
mentioning in this regard is [32], where a method called ZSL-CPLSR is proposed. Basically, ZSL-CPLSR aims
to learn class prototypes in the feature space for both training and test classes. In doing so, ZSL-CPLSR
tries to ensure that the relationship between the training and test classes present in the semantic space is
preserved in the feature space. Although ZSL-CPLSR and our proposed method both attempt to learn class
prototype vectors, ZSL-CPLSR differs in two ways. Firstly, ZSL-CPLSR tries to solve a nonconvex optimization
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problem, while we rely on the LVQ algorithm, which is entirely heuristic, and secondly, ZSL-CPLSR creates
the prototype vectors in the feature space, while it is the semantic space in our case. Another notable work is
[33], which proposes convolutional prototype learning that performs in the feature space. The distinguishing
element of this work is the assumption that the training and test classes follow similar distributions at task-
level, meaning that they share similar zero-shot tasks, while the generic models in ZSL, including ours, assume
that the training and test classes follow the same sampling distribution. We conclude this section with [34],
where a model called discriminative domain-invariant prototypes (DDIP) is proposed. Similar to ZSL-CPLSR
and our method, DDIP also attempts to learn prototype vectors for both the training and test classes, with
the difference that these prototypes are learned in a latent hyperspherical space. Moreover, DDIP imposes
an orthogonal constraint to ensure that the resulting prototypes are orthogonal to each other, which, in turn,
makes them more discriminative in the latent space. As in ZSL-CPLSR, however, DDIP deals with a nonconvex
optimization problem and thus obtains suboptimal solutions.

3. Methodology

This section begins with a formal definition of the Zero-Shot Learning (ZSL) problem, then moves to an
explanation of the LVQ algorithm and its variants in which we are interested, and is concluded with an
explanation of how we use the LVQ to treat the domain shift problem of ZSL.

3.1. Problem setup
In ZSL, there are two sets of classes: the set of training classes, i.e. seen classes; and the set of test classes, i.e.
unseen classes, where we denote these sets as S and U , respectively. We assume that these sets are disjoint:
S ∩ U = ∅ and that we have semantic representations of the training and test classes, which we denote as
k-dimensional vectors: my ∈ Rk , where y belongs to S or U . These representations are also known as class
prototypes. X ∈ Rd denotes d-dimensional feature space in which both the training and test instances are
originally represented. Given the semantic representations and a training set Dtr = {(xi, yi) ∈ X × S}Ntr

i=1 , we
aim in ZSL to assign the instances of a test set Dte = {xi ∈ X}Nte

i=1 with a test class. To this end, we learn a
mapping f : X → U defined as follows:

argmax
y∈U

F (x, y;W ), (1)

where F measures the compatibility between x and y and is parameterized by a matrix W of size d × k .
Note that this compatibility is measured in the semantic space after x is projected through W. In this study,
we restrict ourselves to linear compatibility between instances and classes, i.e. x and y , thus define F as
dot-product similarity:

F (x, y;W ) = xTWmy (2)

When it comes to determining the matrix W , the literature offers a number of methods motivated by different
needs. Theoretically, the idea we propose in this paper is compatible with all of them, but we only consider the
state-of-the-art and explain it below.

3.2. Projection methods to learn W

The methods presented in this context have in common that they aim at producing a higher compatibility
between training instances and their class prototypes than between training instances and other class prototypes
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in the semantic space. In doing so, they define different objective functions, but in the following we give a unified
formulation for these methods following the notation in [2].

Deep visual semantic embedding (DeViSE) [13] uses hinge rank loss as in unregularized ranking
SVM: ∑

y∈S
max [0,∆(yi, y) + F (xi, y;W )− F (xi, yi;W )] . (3)

Here the term ∆(yi, y) provides a confidence in classifying the i -th instance, i.e. the margin of the classifier,
and defined as ∆(yi, y) = 0 if yi = y , 1 otherwise.

Attribute label embedding (ALE) [14] uses an objective function which ensures that correct labels
are ranked higher than incorrect ones, and its objective function is:

∑
y∈S

βr∆(xi,yi)

r∆(xi, yi)
max [0,∆(yi, y) + F (xi, y;W )− F (xi, yi;W )] . (4)

Defining r(xi, yi) as the rank of yi for instance xi ; r∆(xi, yi) indicates how many classes achieve a comparable
compatibility score considering the score of the correct class, i.e. yi , is thus defined as∑

y∈S
∆(yi, y) + F (xi, y;W ) > F (xi, yi;W ) , (5)

where is a boolean function, equals 1 if its argument is true and 0 otherwise. Also note that r(xi, yi)

is an upper-bound on the rank of yi for xi . This being said, βr∆(xi,yi) is equal to
∑r(xi,yi)

j=1 αj , where
αj corresponds to the penalty incurred by moving from rank j to j + 1 and defines a decreasing sequence
α1 ≥ α2 ≥ ... ≥ α|S| ≥ 0 . Akata et al. propose to choose αj = 1/j [14].

Structured joint embedding (SJE) [15] considers only the maximum violating class, i.e. an incorrect
class, but still achieves the highest compatibility score. Thus, the objective function of SJE, inspired by the
structured SVM, is defined as:

max[0,max
y∈S

[∆(yi, y) + F (xi, y;W )− F (xi, yi;W )]]. (6)

We note that since SJE does not take into account the other incorrect classes, it tends to have low performance
compared to DeViSE and ALE.

Embarrassingly simple zero-shot learning (ESZSL) [16] considers the following regularization term:

γ∥Wmy∥2 + λ∥WT x∥2 + β∥W∥Fro, (7)

where γ, λ , and β are regularization parameters. Here, the first term controls the (Euclidean) norm of the
projected class prototypes in the feature space, which allows for a fair comparison between prototypes even
when the training set is highly imbalanced. The second term, on the other hand, bounds the projection of the
training instances into the semantic space so that the projection does not depend on the distribution of the
training features. Finally, the third term penalizes the Frobenius norm of the projection matrix W .

Semantic AutoEncoder (SAE) [8] first projects the feature space into the semantic space through W

and then reconstructs the original feature space using the transpose of W . In doing so, SAE tries to minimize
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the error that may occur when reconstructing the original feature space. With this in mind, SAE attempts to
minimize the following objective:

argmin
W∈Rd×k

∥x −Wmy∥2 + λ∥WT x − my∥2, (8)

where λ is a regularization parameter that can control the importance of the projection from the semantic space
to the feature space.

We conclude this section with a note on how to optimize the objective functions defined above. Concretely,
DeViSE, ALE, and SJE use stochastic gradient descent-based methods that perform early stopping to allow
implicit regularization for W . ESZSL and SAE, on the other hand, deal with a convex objective function and
can therefore provide a closed-form solution.

3.3. LVQ treatment for ZSL

In the previous section, we discussed the ZSL methods that can make instances and class prototypes compatible
through a mapping W . From now on, we turn our attention to refining the positions of the class prototypes
with respect to W learned using the instances of training classes. This enables us to connect ZSL’s training
and testing phases. For this purpose, we make use of the learning vector quantization (LVQ) algorithm [12]. In
fact, LVQ helps to pull the prototypes towards their instances while pulling them away from the instances of
the other classes. In this study, we explore a number of the most commonly used LVQ variants from the point
of view of ZSL.

LVQ refers to a family of algorithms that aim to learn class prototypes representing class regions, i.e.
Voronoi partitions [12, 35]. Starting from initial positions for the prototypes, LVQ updates the positions iterating
over the training data. After the prototypes are learned, classification is performed according to the winner-
takes-all rule, i.e. test instance is assigned to the class whose prototype is the nearest. Since ZSL also deals with
class prototypes, a relationship between ZSL and LVQ is highly likely, which leads us to conduct this study.

Kohonen introduced the first versions of LVQ, including LVQ1, LVQ2.1, LVQ3, and OLVQ, about 30
years ago [12]. Since then, several variants have been developed [35–38]. Although it was initially developed
as a heuristic method, its theoretical and algorithmical aspects, such as its generalization bounds and the loss
functions associated with it, were later described [11, 39, 40]. In the following, we first review the initial versions
of LVQ and then continue with its optimized versions.

3.3.1. The initial versions of LVQ for ZSL

The LVQ algorithms in this group employ a heuristic method to determine the positions of the class prototypes,
and therefore do not require a cost function to be optimized. Nevertheless, their empirical results are still
respectable compared to versions using more advanced methods [35].

LVQ1, by far the most popular LVQ algorithm, corrects only the winner prototype, i.e. the one closest
to the instance of interest. If the winner prototype corresponds to the true class, then it is updated with

my(t+ 1) = my(t) + α(t)
[
WT x − my(t)

]
, (9)

else, it is updated with:
my(t+ 1) = my(t)− α(t)

[
WT x − my(t)

]
. (10)
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In (9), my is pulled towards x ; thus, it moves away from the class boundaries, while in (10), my is pulled away
from x . For α(t) , it is a constant between 0 and 1. Alternatively, one may wish to decrease α(t) over time to
reduce its effect in later iterations. A popular approach that we also consider in this study is:

α(t) = α(1− t

maxIter
)

where α is an initial step size, maxIter is the total number of iterations and t denotes time.
LVQ2.1 differs from LVQ1 in that it updates two prototypes simultaneously. The first is the one

corresponding to the true class and is updated with (9), and the second is the one corresponding to the
nearest class considering the other classes and is updated with (10). However, these updates only occur when
an instance falls into a window of the decision border, which depends on whether the following inequality holds:

min

(
disti
distj

,
distj
disti

)
>

1− w

1 + w
(11)

with w denoting width of the window. Larger w values can lead to unnecessary updates of class prototypes.
Kohonen therefore recommends choosing a value between 0.2 and 0.3. Specifically for this study, we tried a
range of values between 0.2 and 0.3 but did not find any noticeable difference in the performance of the ZSL
methods equipped with LVQ2.1. However, since a value of 0.3 generally provides better results, we set w to
0.3 during the experiments. Moreover, in equation (11), disti (resp. distj ) denotes the Euclidean distance
between instance of interest and the prototype of its true class (resp. that of the other closest class). With
these update rules, LVQ2.1 attempts to approximate the Bayes decision boundaries. Nevertheless, LVQ2.1 has
been criticized for being unstable because LVQ2.1 makes adjustments only in the presence of errors, i.e. when
an instance is in a local window [35, 39].

OLVQ, another common LVQ variant, refers to optimized-learning LVQ and assigns an optimal learning
rate to each prototype. Instead of considering a one-size-fits-all learning rate, OLVQ uses the following learning
rate specific to my :

αy(t+ 1) =
αy(t)

1 + s(t)αy(t)
, (12)

where s(t) is set to 1 , if y is the true class of an instance, and −1 otherwise. As in LVQ1, only the closest
prototype is updated, using either (9) or (10) depending on whether y is the true class. Moreover, it is common
practice to set all initial learning rates to 0.3 [12]. The main advantage of OLVQ over the other two LVQ
algorithms is that it converges quickly.

We note that there is another popular variant of LVQ introduced by Kohonen, LVQ3 [12], which we
do not consider in this study. The reason is that LVQ3 requires multiple prototypes for each class, which is
impossible under the conventional setting of ZSL. Therefore, we cannot make use of LVQ3 as a treatment for
ZSL.

3.3.2. The generalized versions of LVQ for ZSL

The Kohonen versions of LVQ rely on heuristic arguments that raise concerns such as stability, generalizability,
and convergence [40]. This has led to the development of versions that have solid mathematical foundations. In
this context, Sato et al. introduced generalized LVQ (GLVQ), which considers an explicit cost function for the
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LVQ for the first time in the literature [36]. Specifically, GLVQ tries to minimize the following cost function:

Ntr∑
i=1

f(µi) where µi =
disti − distj
disti + distj

(13)

where disti and distj are the distances defined as in (11). Here, f is chosen to be a monotonically increasing
function, such as sigmoid function [36, 37]. (13) is minimized with respect to the prototype vectors using the
steepest descent method [36]. We note that minimizing (13) amounts to maximizing the hypothesis margin of
an LVQ classifier due to term disti − distj because the lower this term is, the more confidence the classifier
gains [11].

GRLVQ [37] refers to generalized relevance learning vector quantization that combines GLVQ with metric
learning [41]. Specifically, GRLVQ substitutes the conventional Euclidean distance used to determine the
distances between instances and prototypes with the following metric:

∥WT x − my∥2Λ = (WT x − my)
TΛ(WT x − my), (14)

where Λ is a diagonal matrix with entries Λi,i = λi ∈ R for i ∈ {1, ..., k} . Here λi scales the dimensions of
the semantic space according to their relevance; hence, they are called relevance factors [37]. In practice, this
means that one can use GRLVQ for ZSL to take into account the relevance of the attributes when computing
the distances to the class prototypes in the semantic space. In fact, GRLVQ learns both the positions of the
prototypes and the relevance factors. As in GLVQ, GRLVQ also employs a stochastic gradient descent for the
optimization problem.

GMLVQ [38], which is referred to as generalized matrix learning vector quantization, estimates a full
k × k matrix Λ for (14). This enables GMLVQ to consider correlations between the attributes.

Finally, in Figure 2, we summarize the proposed LVQ-empowered ZSL method in the form of a block
diagram. This diagram starts with the training set and the class representations of both the training classes
and test classes as input, proceeds to generate a projection matrix based on a ZSL method, then updates the
class prototypes using an LVQ method of choice, and ends with the output of the refined class prototypes.

Algorithm 1 The LVQ-empowered ZSL method.
Input: Training set: Dtr = {(xi, yi) ∈ X × S}Ntr

i=1 (X ⊂ Rd ), sets of seen and unseen classes: S , and U ,
class prototypes of the training and test classes {my} ⊂ Rk (y ∈ S or U ), a ZSL method that can generate
a projection matrix W ∈ Rd×k , a LVQ method, e.g., LVQ1, GLVQ,.., etc., max iteration number maxIter .
Output: Updated class prototypes {my} ⊂ Rk (y ∈ S or U ) wrt the projection matrix W .

1: Project the train instances x ∈ X into the semantic space using W , i.e. WT x .
2: for t = 1 : maxIter do
3: for (x, y) ∈ Dtr do
4: Compare WT x with all of the class prototypes {my} and find the nearest one: m∗

y

5: if m∗
y corresponds to y then

6: Update m∗
y so that it is pulled towards x based on the LVQ method of choice.

7: else
8: Update m∗

y so that it is pulled away from x based on the LVQ method of choice.
9: end if

10: end for
11: end for
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Figure 2. A block diagram for the LVQ-empowered ZSL method.

4. Experiments

In this section, we begin by introducing the datasets in which we are interested in this study. We then explain
the settings of the ZSL methods and the LVQ methods, and finally present the results along with a detailed
discussion.

4.1. Datasets
For this study, we use five benchmark datasets for evaluation: AWA1 [3], AWA2 [2], CUB [42], SUN [43],
and aPY [44]. We extract features from these datasets following the procedure explained in a survey on ZSL
[2]. Concretely, for datasets AWA1, AWA2, CUB, and SUN, we consider the entire image, while for aPY
we consider bounding boxes for feature extraction. To extract the features, we use deep convolutional neural
networks (CNNs) trained on ImageNet-1K resulting in 101-layered ResNet. We then use the 2048-dimensional
top-layer pooling units of the network.

AWA1 is the original form of the famous animal with attributes dataset introduced by Lampert et al.
[3]. It consists of images of 50 animals represented by 85 visual attributes. AWA2 contains images of the same
50 animals represented by the same 85 attributes but uses images from public sources such as Wikipedia and
Filickr [2]. CUB and SUN are both fine-grained and thus challenging datasets, with CUB containing 200 bird
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species and SUN containing 717 scene categories [42, 43]. Finally, aPY contains aPascal/aYahoo objects from
32 categories [44]. More details about these datasets can be found in Table 1.

Table 1. Statistics of the benchmark datasets used for evaluation.

Dataset # Attributes # Seen cls. # Unseen cls. # Train. insts. # Test insts. # Total insts.
AWA1 [3] 85 40 10 24,295 6180 30,475
AWA2 [2] 85 40 10 30,337 6985 37,322
CUB [42] 312 150 50 8855 2933 11,788
SUN [43] 102 645 72 12,900 1440 14340
aPY [44] 64 20 12 12,695 2644 15,339

4.2. Evaluation criteria
In ZSL, the Top-1 accuracy is the most common measure for evaluating a classifier’s performance in classifying
unseen classes, which is basically an accuracy averaged over the classes [2, 8, 14]. This prevents the accuracy
measure from being dominated by densely populated classes. In fact, the Top-1 accuracy is nothing more than
a class-averaged recall measure, since it is concerned with the ratio of correctly predicted instances per class.
Accordingly, the Top−1 accuracy is calculated as follows:

Top− 1 = Recall =
1

|U|
∑
c∈U

# correct predictions in c

# instances in c
. (15)

In addition to the Top-1 accuracy, there are other performance measures that are commonly used in
machine learning/computer vision, namely precision, and F1-score. As in the recall measure, to compute the
precision measure for ZSL, we can estimate the precision per (unseen) class and then average them which can
be defined as follows:

Precision =
1

|U|
∑
c∈U

# correct predictions in c

# instances predicted as c
. (16)

F1-score combines the precision and recall and is defined as the harmonic mean of the two:

F1 = 2× Precision×Recall

Precision+Recall
. (17)

4.3. Results and discussion
Recall that we use five different methods to obtain a mapping from feature space to semantic space: DeViSE
[13], ALE [14], SJE [15], ESZSL [16], and SAE [8]. Of these, DeViSE, ALE, and SJE use gradient descent
optimization, where the learning rate plays a crucial role in the success of the optimization problem. We
therefore report results for a range of different learning rates. In doing so, we aim to show the effectiveness of
the LVQ algorithms for the ZSL methods in different situations. Specifically, we let the learning rate range over
the set {0.0001, 0.001, 0.01, 0.1, 1} . For each dataset and for each learning rate, we obtain the Top-1 accuracy
for the gradient-based LVQ methods, i.e. DeViSE, ALE, and SJE, and for their LVQ extensions. Tables 2–4
show these results.
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Unlike the above mentioned ZSL methods, ESZSL [16] has a closed form solution; thus, no iterative
algorithm, such as gradient descent, is required, which, in turn, makes ESZSL independent of the learning
rate. However, ESZSL has three regularization parameters γ, λ , and β that must be set, see (7). In [16], it
is recommended to multiply γ and λ to get β , which reduces the number of parameters to 2, i.e. γ and
λ . Furthermore, the survey [2] and original paper [16] state that the ideal value of the parameter λ is 3,
independent of the parameter gamma. This leaves us with only one parameter to set, namely gamma γ . As a
result, we give the Top-1 accuracy scores of ESZSL for different values of γ . For this purpose, we consider the
set {−2,−1, 0, 1, 2} from which γ takes a value. This is consistent with the survey [2] and the original paper
[16]. SAE, on the other hand, has a regularization parameter λ that need to be carefully tuned. Considering
the related works, we use the following parameters for λ : {0.1, 1, 5, 10, 50]} . Tables 5 and 6 show the Top-1
accuracy scores of ESZSL and SAE, respectively.

Table 2. Top-1 accuracy scores of DeViSE [13] and its LVQ extensions.

Dataset Learn. rate DeViSE DeViSE DeViSE DeViSE DeViSE DeViSE DeViSE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1

0.0001 0.428 0.444 0.393 0.455 0.428 0.411 0.415
0.001 0.563 0.575 0.426 0.583 0.569 0.505 0.564
0.01 0.552 0.552 0.378 0.573 0.562 0.531 0.554
0.1 0.529 0.548 0.444 0.544 0.535 0.485 0.529
1 0.495 0.435 0.442 0.495 0.499 0.433 0.495

AWA2

0.0001 0.571 0.571 0.434 0.585 0.573 0.509 0.509
0.001 0.576 0.576 0.434 0.589 0.576 0.511 0.508
0.01 0.584 0.601 0.444 0.597 0.581 0.511 0.52
0.1 0.528 0.528 0.443 0.546 0.525 0.497 0.528
1 0.504 0.524 0.441 0.504 0.506 0.392 0.504

CUB

0.0001 0.02 0.065 0.0673 0.071 0.027 0.02 0.02
0.001 0.072 0.276 0.294 0.245 0.073 0.101 0.107
0.01 0.076 0.246 0.295 0.248 0.173 0.103 0.106
0.1 0.423 0.451 0.533 0.462 0.422 0.456 0.465
1 0.441 0.461 0.547 0.477 0.444 0.436 0.438

SUN

0.0001 0.334 0.506 0.469 0.468 0.351 0.382 0.387
0.001 0.541 0.588 0.545 0.582 0.542 0.553 0.553
0.01 0.556 0.568 0.432 0.572 0.556 0.544 0.564
0.1 0.519 0.338 0.308 0.444 0.521 0.541 0.537
1 0.537 0.336 0.299 0.444 0.541 0.497 0.538

aPY

0.0001 0.083 0.171 0.221 0.181 0.099 0.099 0.099
0.001 0.083 0.205 0.224 0.169 0.091 0.099 0.083
0.01 0.268 0.282 0.319 0.309 0.274 0.273 0.274
0.1 0.318 0.369 0.352 0.384 0.324 0.331 0.331
1 0.333 0.361 0.369 0.394 0.336 0.338 0.338

The immediate result that can be derived from Tables 2–6 is that the accuracy of the ZSL methods
improves when they are equipped with an LVQ algorithm, regardless of the dataset used. More precisely, it is
useful to update the positions of the class prototypes in the semantic space with respect to the learned mapping
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Table 3. Top-1 accuracy scores of ALE [14] and its LVQ extensions.

Dataset Learn. rate ALE ALE ALE ALE ALE ALE ALE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1

0.0001 0.457 0.467 0.499 0.472 0.455 0.497 0.497
0.001 0.565 0.582 0.539 0.577 0.566 0.606 0.607
0.01 0.561 0.587 0.512 0.568 0.567 0.606 0.606
0.1 0.565 0.577 0.498 0.586 0.569 0.604 0.605
1 0.547 0.547 0.499 0.579 0.547 0.529 0.531

AWA2

0.0001 0.481 0.481 0.465 0.482 0.476 0.487 0.488
0.001 0.518 0.581 0.506 0.525 0.551 0.556 0.557
0.01 0.522 0.583 0.485 0.529 0.557 0.563 0.565
0.1 0.532 0.564 0.485 0.545 0.561 0.552 0.552
1 0.515 0.561 0.481 0.516 0.521 0.548 0.548

CUB

0.0001 0.101 0.325 0.301 0.248 0.181 0.138 0.153
0.001 0.334 0.409 0.441 0.408 0.359 0.377 0.382
0.01 0.471 0.488 0.541 0.492 0.473 0.436 0.437
0.1 0.484 0.497 0.547 0.501 0.485 0.447 0.451
1 0.474 0.488 0.543 0.495 0.477 0.457 0.457

SUN

0.0001 0.329 0.444 0.464 0.426 0.369 0.361 0.363
0.001 0.522 0.549 0.551 0.553 0.527 0.543 0.543
0.01 0.609 0.623 0.622 0.621 0.611 0.614 0.615
0.1 0.617 0.626 0.633 0.627 0.621 0.626 0.627
1 0.603 0.613 0.609 0.611 0.602 0.612 0.613

aPY

0.0001 0.225 0.292 0.359 0.296 0.316 0.271 0.213
0.001 0.303 0.316 0.356 0.339 0.301 0.301 0.299
0.01 0.291 0.309 0.361 0.331 0.302 0.298 0.299
0.1 0.333 0.354 0.392 0.361 0.359 0.284 0.284
1 0.367 0.371 0.384 0.381 0.364 0.407 0.407

using an LVQ method. The improvement is up to 20% , especially when the ZSL method performs poorly, which
occurs due to inappropriate parameter settings. When the ZSL methods show better performance, applying the
LVQ algorithms results in a smaller increase in the accuracy. In this case, the improvement ranges from 2% to
10% for DeViSE, 2% to 6% for ALE, 0.05% to 2% for SJE, 0.05% to 2% for ESZSL, and 1% to 10% for
SAE. This implies that DeViSE and SAE gain the most from the LVQ algorithms, but SJE and ESZSL gain
the least. We also note that the highest improvement in the accuracy is obtained with CUB and aPY datasets
in general, where the improvements are 4.5% on average.

Considering the parameters that lead to the highest accuracy for each ZSL method and for each dataset,
we also calculated the class-averaged precision and F1 scores as in (16) and (17). Tables 7 and 8 show the
precision and F1 scores of the original ZSL methods and their LVQ extensions, respectively.

Based on the precision scores shown in Table 7, as in the case of the Top-1 accuracy scores, we claim that
using an LVQ algorithm together with a ZSL classifier increases the precision of the classifier. The increase here
is up to 11% , though it is mostly between 1% and 4% . Comparing the ZSL methods based on their precision
gain resulting from the use of an LVQ algorithm, SAE is in the first place with an average gain of 5% , followed
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Table 4. Top-1 accuracy scores of SJE [15] and its LVQ extensions.

Dataset Learn. Rate SJE SJE SJE SJE SJE SJE SJE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1

0.0001 0.101 0.283 0.371 0.163 0.175 0.101 0.101
0.001 0.206 0.372 0.399 0.388 0.381 0.271 0.331
0.01 0.567 0.591 0.521 0.578 0.562 0.515 0.515
0.1 0.586 0.602 0.505 0.591 0.582 0.577 0.579
1 0.588 0.588 0.483 0.618 0.584 0.593 0.594

AWA2

0.0001 0.131 0.293 0.355 0.201 0.205 0.131 0.131
0.001 0.307 0.392 0.401 0.399 0.391 0.394 0.394
0.01 0.567 0.581 0.572 0.588 0.574 0.574 0.576
0.1 0.583 0.583 0.577 0.588 0.577 0.574 0.574
1 0.508 0.503 0.528 0.545 0.533 0.533 0.533

CUB

0.0001 0.108 0.259 0.249 0.262 0.132 0.109 0.184
0.001 0.362 0.409 0.331 0.414 0.381 0.373 0.383
0.01 0.489 0.481 0.389 0.479 0.491 0.465 0.49
0.1 0.495 0.393 0.377 0.388 0.495 0.503 0.512
1 0.493 0.383 0.383 0.386 0.493 0.487 0.487

SUN

0.0001 0.101 0.284 0.281 0.285 0.125 0.106 0.126
0.001 0.416 0.499 0.475 0.497 0.437 0.429 0.444
0.01 0.536 0.526 0.483 0.541 0.541 0.511 0.533
0.1 0.531 0.499 0.483 0.494 0.538 0.507 0.541
1 0.534 0.489 0.461 0.496 0.538 0.534 0.551

aPY

0.0001 0.083 0.226 0.214 0.244 0.107 0.135 0.135
0.001 0.251 0.277 0.194 0.286 0.302 0.287 0.297
0.01 0.312 0.321 0.255 0.322 0.345 0.345 0.345
0.1 0.331 0.336 0.288 0.341 0.339 0.335 0.336
1 0.341 0.341 0.298 0.346 0.342 0.342 0.341

by DeViSE with an average gain of 3% . The precision gain is the lowest for SJE and ESZSL. This result is
consistent with that of the Top-1 accuracy results. As with the Top-1 scores, the highest gain in precision is
observed using an LVQ algorithm on the CUB dataset.

4.4. Comparison of the LVQ versions

It may be also necessary to figure out which LVQ is the most appropriate for each ZSL method. For this
purpose, we consider the F1-scores listed in Table 8, as they reflect both the Top-1 accuracy, i.e. recall and
the precision scores. Based on these scores, we compare the average ranks of the LVQ methods for each ZSL
method. In particular, for each ZSL method, and for each dataset, we rank the results, i.e. the F1 scores;
obtained with the original form of the ZSL method of interest and its LVQ extensions. We then average these
ranks across all datasets. The rows in Table 9 correspond to these average ranks for each ZSL method.

In general, we conclude that LVQ1 and OLVQ achieve the highest improvement for the ZSL methods;
thus, they are recommended to be used with the ZSL methods considered in this paper. These LVQ versions
are followed by two generalized LVQ methods GLVQ and GMLVQ in terms of their contribution to the success
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Table 5. Top-1 accuracy scores of ESZSL [16] and its LVQ extensions.

Dataset Gamma γ ESZSL ESZSL ESZSL ESZSL ESZSL ESZSL ESZSL
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1

-2 0.488 0.494 0.487 0.492 0.501 0.485 0.485
-1 0.553 0.556 0.538 0.553 0.553 0.549 0.548
0 0.556 0.556 0.551 0.556 0.566 0.557 0.559
1 0.506 0.506 0.506 0.506 0.524 0.506 0.506
2 0.499 0.501 0.501 0.499 0.511 0.499 0.499

AWA2

-2 0.501 0.501 0.475 0.502 0.498 0.485 0.488
-1 0.547 0.547 0.522 0.547 0.541 0.499 0.503
0 0.537 0.537 0.528 0.537 0.548 0.523 0.523
1 0.489 0.492 0.489 0.489 0.516 0.489 0.489
2 0.473 0.474 0.473 0.474 0.505 0.473 0.473

CUB

-2 0.439 0.443 0.445 0.444 0.442 0.423 0.426
-1 0.485 0.485 0.492 0.486 0.486 0.497 0.497
0 0.472 0.475 0.473 0.472 0.473 0.472 0.474
1 0.428 0.429 0.429 0.428 0.431 0.428 0.428
2 0.433 0.439 0.439 0.433 0.433 0.433 0.433

SUN

-2 0.468 0.471 0.479 0.471 0.469 0.471 0.477
-1 0.501 0.504 0.508 0.504 0.501 0.501 0.501
0 0.552 0.556 0.558 0.555 0.552 0.552 0.558
1 0.547 0.549 0.548 0.548 0.555 0.548 0.548
2 0.554 0.554 0.554 0.554 0.555 0.555 0.555

aPY

-2 0.304 0.345 0.322 0.321 0.304 0.334 0.334
-1 0.344 0.352 0.341 0.346 0.344 0.343 0.346
0 0.367 0.367 0.366 0.369 0.367 0.365 0.367
1 0.335 0.338 0.335 0.335 0.335 0.336 0.336
2 0.314 0.314 0.314 0.314 0.314 0.314 0.314

of the ZSL methods. The case of LVQ2.1 is worth mentioning here. Although LVQ2.1 is the second best LVQ
extension for SAE and increases the Top-1 accuracy of SAE by up to 15% for aPY, LVQ2.1 tends to degrade the
classification ability of SJE and ESZSL, see Table 9. This can be attributed to the unstable nature of LVQ2.1,
as mentioned in 3.3.1. Therefore, the use of LVQ2.1 in conjunction with the ZSL methods raises concerns.

We also want to determine if the differences between the observed average ranks, i.e. those shown in
Table 9, are statistically significant. For this purpose, we performed the Freidman test [45]. For each ZSL
method, with seven classifiers (the original one plus six LVQ extensions) and five datasets, the test statistic
of the Freidman test, FF , follows the F distribution with 7 − 1 = 6 and (7 − 1) × (5 − 1) = 24 degrees of
freedom. The critical value of F (6, 24) is 2.51 at 95% confidence level. Since the test statistics FF for the
different ZSL methods are always below the critical value of 2.51 and vary between 0.93 and 1.13, we cannot
reject the null hypothesis that the average ranks are significantly different from the mean rank of 4. We thus
conclude that the conducted Freidman test is not powerful enough to reject the null hypothesis that all LVQ
extensions contribute equally to the accuracy of a ZSL method.
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Table 6. Top-1 accuracy scores of SAE [8] and its LVQ extensions.

Dataset Reg. Param. λ SAE SAE SAE SAE SAE SAE SAE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1

0.1 0.515 0.521 0.526 0.521 0.532 0.561 0.561
1 0.526 0.535 0.543 0.535 0.571 0.569 0.569
5 0.511 0.519 0.542 0.519 0.561 0.553 0.553
10 0.505 0.515 0.545 0.514 0.551 0.549 0.548
50 0.494 0.511 0.537 0.511 0.531 0.531 0.529

AWA2

0.1 0.498 0.503 0.515 0.504 0.559 0.551 0.551
1 0.514 0.528 0.543 0.528 0.568 0.571 0.571
5 0.493 0.521 0.548 0.507 0.542 0.571 0.568
10 0.482 0.494 0.549 0.496 0.545 0.571 0.568
50 0.469 0.485 0.536 0.482 0.536 0.526 0.522

CUB

0.1 0.322 0.334 0.339 0.337 0.312 0.349 0.349
1 0.289 0.324 0.326 0.331 0.311 0.353 0.353
5 0.331 0.391 0.383 0.369 0.349 0.386 0.387
10 0.354 0.384 0.402 0.383 0.363 0.396 0.396
50 0.382 0.408 0.433 0.406 0.401 0.424 0.429

SUN

0.1 0.523 0.551 0.546 0.551 0.531 0.555 0.556
1 0.534 0.511 0.502 0.512 0.484 0.512 0.512
5 0.509 0.511 0.493 0.497 0.482 0.489 0.491
10 0.496 0.522 0.504 0.504 0.474 0.494 0.495
50 0.488 0.515 0.507 0.491 0.483 0.493 0.499

aPY

0.1 0.086 0.233 0.242 0.234 0.234 0.266 0.266
1 0.166 0.246 0.273 0.248 0.243 0.259 0.261
5 0.144 0.264 0.305 0.266 0.261 0.274 0.281
10 0.131 0.322 0.319 0.295 0.273 0.293 0.301
50 0.102 0.304 0.334 0.303 0.301 0.305 0.303

5. Conclusions and future work
Zero-shot learning (ZSL) refers to learning to classify images (instances) of classes for which there are no labeled
instances in the training set, i.e. unseen (test) classes. In doing so, ZSL leverages high-level descriptions of
the classes given in the form of a list of attributes corresponding to semantically meaningful properties. These
attributes form class prototypes the in semantic space. ZSL methods generally aim to map the instances of
test classes in the feature space (visual space) to the semantic space. However, this mapping is learned through
training classes, i.e. those that are present in the training phase, which leads to the domain shift problem.

In this study, we suggest employing the LVQ algorithm for ZSL. This offers a number of advantages.
Firstly, it updates the prototypes of the test classes with respect to learned mapping, which helps to reduce
the discrepancy between the training and testing phases of ZSL and thus alleviates the effects of the domain
shift problem. Another advantage is that LVQ helps to separate class prototypes in the semantic space, which
is much less discriminative compared to the feature space. As a result, we obtain better classification results.
Furthermore, since LVQ is a prototype learning method, this study sheds light on the link between ZSL and
prototype learning, which has not been well studied so far, even though ZSL inherently uses class prototypes.
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Table 7. Precision scores of the ZSL methods and their LVQ extensions.

Dataset
ZSL method

DeViSE DeViSE DeViSE DeViSE DeViSE DeViSE DeViSE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.498 0.498 0.401 0.529 0.508 0.473 0.503
AWA2 0.502 0.502 0.384 0.511 0.501 0.488 0.493
CUB 0.548 0.579 0.564 0.571 0.549 0.546 0.547
SUN 0.591 0.596 0.495 0.611 0.589 0.605 0.594
aPY 0.201 0.266 0.242 0.215 0.203 0.208 0.208

Dataset ALE ALE ALE ALE ALE ALE ALE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.524 0.543 0.522 0.543 0.558 0.554 0.554
AWA2 0.535 0.541 0.514 0.531 0.528 0.453 0.462
CUB 0.546 0.551 0.566 0.546 0.552 0.511 0.512
SUN 0.652 0.652 0.643 0.652 0.652 0.648 0.648
aPY 0.314 0.301 0.289 0.288 0.292 0.313 0.311

Dataset SJE SJE SJE SJE SJE SJE SJE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.577 0.617 0.411 0.604 0.571 0.543 0.541
AWA2 0.583 0.583 0.524 0.585 0.582 0.509 0.502
CUB 0.509 0.463 0.451 0.504 0.517 0.509 0.511
SUN 0.558 0.542 0.495 0.558 0.558 0.527 0.557
aPY 0.181 0.161 0.158 0.156 0.177 0.162 0.188

Dataset ESZSL ESZSL ESZSL ESZSL ESZSL ESZSL ESZSL
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.523 0.523 0.518 0.523 0.531 0.525 0.526
AWA2 0.515 0.515 0.508 0.515 0.519 0.507 0.507
CUB 0.498 0.499 0.503 0.499 0.501 0.511 0.511
SUN 0.588 0.588 0.588 0.588 0.588 0.588 0.588
aPY 0.226 0.238 0.229 0.226 0.226 0.241 0.243

Dataset SAE SAE SAE SAE SAE SAE SAE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.495 0.544 0.545 0.495 0.586 0.678 0.682
AWA2 0.563 0.563 0.562 0.563 0.589 0.614 0.614
CUB 0.481 0.485 0.571 0.481 0.495 0.517 0.521
SUN 0.612 0.645 0.632 0.628 0.614 0.605 0.605
aPY 0.109 0.107 0.132 0.113 0.109 0.115 0.116

We consider a range of LVQ algorithms from the initial versions to more advanced ones. For the ZSL
methods that enable mapping from the feature space to the semantic space, we utilize DeViSE [13], ALE [14],
SJE [15], ESZSL [16], and SAE [8]. Combining the ZSL methods with the LVQ algorithms, we obtain their
LVQ extensions, which have been shown to outperform their original counterparts in the experiments on five
benchmark datasets. We measure the performance of the ZSL methods and their LVQ extensions in terms of
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Table 8. F1 scores of the ZSL methods and their LVQ extensions.

Dataset
ZSL method

DeViSE DeViSE DeViSE DeViSE DeViSE DeViSE DeViSE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.524 0.524 0.408 0.549 0.532 0.475 0.528
AWA2 0.537 0.537 0.401 0.547 0.535 0.446 0.449
CUB 0.488 0.511 0.556 0.519 0.489 0.468 0.471
SUN 0.573 0.582 0.433 0.591 0.572 0.571 0.578
aPY 0.251 0.297 0.293 0.278 0.253 0.248 0.249

Dataset ALE ALE ALE ALE ALE ALE ALE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.543 0.549 0.522 0.554 0.565 0.578 0.578
AWA2 0.531 0.539 0.455 0.532 0.546 0.501 0.529
CUB 0.502 0.513 0.557 0.515 0.508 0.476 0.478
SUN 0.635 0.643 0.636 0.642 0.636 0.634 0.636
aPY 0.307 0.294 0.311 0.314 0.288 0.294 0.292

Dataset SJE SJE SJE SJE SJE SJE SJE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.583 0.601 0.459 0.611 0.577 0.548 0.549
AWA2 0.586 0.583 0.549 0.587 0.588 0.525 0.528
CUB 0.501 0.419 0.414 0.491 0.505 0.501 0.502
SUN 0.547 0.534 0.488 0.548 0.549 0.519 0.551
aPY 0.236 0.213 0.208 0.211 0.233 0.221 0.222

Dataset ESZSL ESZSL ESZSL ESZSL ESZSL ESZSL ESZSL
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.539 0.539 0.534 0.539 0.545 0.537 0.538
AWA2 0.526 0.526 0.518 0.526 0.533 0.515 0.515
CUB 0.492 0.492 0.496 0.492 0.493 0.503 0.503
SUN 0.571 0.577 0.561 0.581 0.571 0.564 0.574
aPY 0.272 0.285 0.274 0.273 0.272 0.279 0.281

Dataset SAE SAE SAE SAE SAE SAE SAE
+LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ

AWA1 0.514 0.542 0.544 0.514 0.579 0.623 0.624
AWA2 0.545 0.545 0.552 0.545 0.578 0.592 0.592
CUB 0.422 0.441 0.492 0.438 0.442 0.466 0.471
SUN 0.539 0.572 0.561 0.564 0.541 0.554 0.554
aPY 0.151 0.151 0.178 0.155 0.151 0.159 0.161

(class-averaged) Top-1 accuracy (recall) and precision scores. Based on the Top-1 accuracy scores, we manage
to improve the performance of DeViSE and SAE by up to 10% , while the improvement for the other ZSL
methods is around 2% . Based on the precision scores, we reach similar conclusions. We also try to compare the
LVQ algorithms in terms of their contribution to improving the success of the ZSL methods. For this purpose,
for each ZSL method and for each dataset, we rank the F1 scores of the original ZSL method and its LVQ
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Table 9. The average ranks of the original ZSL methods and their LVQ extensions based on the F1 scores.

ZSL method Original +LVQ1 +LVQ2.1 +OLVQ +GLVQ +GRLVQ +GMLVQ
DeViSE 4.2 2.6 4.8 1.6 3.8 6.4 4.6
ALE 4.8 3.1 4.2 2.4 3.8 5.2 4.5
SJE 2.9 4.4 6.6 3.4 2 5.3 3.4
ESZSL 4.6 3 5.2 3.6 3.4 4.6 3.6
SAE 6.5 4.6 2.6 4.9 4.4 2.8 2.2

extensions, and then average these ranks accross the datasets. The averaged ranks indicate that LVQ1 and
OLVQ are the largest contributors for most of the ZSL methods considered, followed by GLVQ and GMLVQ.
Therefore, we recommend using LVQ1 and OLVQ to improve a ZSL method with the LVQ algorithm.

The work presented in this paper can be extended in several directions. One may consider multiple
prototypes for training and test classes, which is consistent with the nature of the LVQ algorithm. In this way,
a famous LVQ variant LVQ3 becomes applicable to ZSL. Indeed, other LVQ variants can also be considered
for ZSL, as we do in this work. In particular, the advanced versions GRLVQ [37] and GMLVQ [38] produce a
matrix with entries corresponding to the relevance of the attributes in the semantic space. Using this matrix in
a Mahalanobis metric, one can perform metric learning in the semantic space. Finally, without requiring any
adaptation, the proposed method can be applied to few-shot learning, where the test classes have few labeled
instances.
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