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Abstract
Artificial neural networks (ANNs) are a type of machine learning model that are designed to mimic the structure and function 
of biological neurons. They are particularly well-suited for tasks such as image and speech recognition, natural language 
processing, and prediction tasks. The success of an ANN in modeling a particular dataset depends on factors such as the size 
and quality of the dataset, the complexity of the model, and the choice of training algorithms. High representation rate of a 
system in the data set can improve the performance of the ANN model. The study we described is focused on using artificial 
neural networks (ANNs) to model temperature-dependent photoluminescence (PL) characterization of GaN epilayers grown 
on patterned sapphire substrates (PSS) using the metalorganic chemical vapor deposition (MOCVD) technique. The ANN 
model is trained using temperature and wavelength as input parameters and intensity as the output parameter, with the goal 
of accurately predicting the PL intensity of the GaN epilayer as a function of temperature and wavelength. The model is 
trained using a large set of experimental data and then tested using data that was not presented to the model during training. 
The results of the study suggest that ANN modeling methodology is an effective and accurate way of modeling temperature-
dependent PL of GaN epilayers grown on PSS. The results of the study suggest that ANN modeling methodology can be 
used to accurately predict the temperature-dependent PL of GaN epilayers grown on PSS. This means that it may be possible 
to reduce the number of required experimental measurements by using the ANN model to predict PL intensity at different 
temperatures, based on a smaller set of experimental measurements. This could potentially save time and resources, while 
still obtaining accurate information about the optical behavior of GaN-based materials at different temperatures.

Keywords  Artificial neural network · MOCVD · Photoluminescence · Semiconductor · Modeling

Introduction

III-Nitride compound semiconductors such as GaN, InN, 
AlN, and related alloys have gotten a lot of attention recently, 
and they have made remarkable development [1–3]. The fun-
damental explanation for this is that GaN and its alloys with 
AlN and InN have a wide range of applications in both elec-
tronic and optoelectronic devices [4]. GaN is a commonly 
utilized material for short-wavelength light-emitting diodes 
(LEDs), laser diodes (LDs), and photodetectors (PDs) that 
can be used in full-color displays and as a pumping source 
for white lightning LEDs [5–7]. High brightness GaN-based 
devices in the UV and green wavelengths are commercially 
available, but optical applications require more development 
[8]. GaN-based thin films are typically produced on a flat 
sapphire substrate [9]. The interface, however, leads to sig-
nificant threading dislocation (TD) densities, which limit 
light output in optical devices because to the huge lattice 
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mismatch and thermal expansion coefficient discrepancies 
between the GaN and sapphire. Techniques for reducing dis-
location density are critical for obtaining high-performance 
GaN-based devices [10, 11].

Several approaches [12–15] exist for reducing TD density 
and improving the crystalline quality of GaN epilayers pro-
duced on sapphire substrates. One of them is the epitaxial 
lateral overgrowth (ELOG) [16] which has been developed 
to reduce the TD density. The TD density was reduced less 
than 108 cm.−2 using this overgrowth technique. To make 
an ELOG like this, first grow a 2–3-μm thick GaN epitaxial 
layer on a sapphire substrate, then shape the GaN epilayer, 
and create a second metalorganic chemical vapor deposition 
(MOCVD) [17, 18] layer on top of it. There is a considerable 
risk of impurity contamination and strain-induced defects 
in succeeding layer growth with this ELOG approach. This 
method includes a two-step MOCVD growth process. To 
overcome these issues, try using patterned sapphire substrate 
(PSS) with no lithographic steps and no suspension through-
out growth process. High-quality GaN epilayers produced 
on PSS and similar nitride-based thin films with high output 
power have been reported [19–22]

GaN has a wurtzite structure in its native state and a large 
direct band gap of 3.4 eV at 300 K, allowing for efficient 
radiative recombination. By alloying or constructing het-
erostructures such as quantum wells with other nitrides, the 
wavelength of radiation from GaN-based materials can be 
adjusted over a wide range from visible to ultraviolet. Prepa-
ration and characterization of high-quality GaN produced 
using various growth procedures and development of GaN-
based devices have all received a lot of attention [23].

The temperature dependency of optical properties of the 
GaN has been the subject of various studies [24–26]. The 
one of the efficient method to characterize optical proper-
ties of GaN epilayers is temperature dependent photolumi-
nescence (PL) spectroscopy. However, the most important 
disadvantage of temperature-dependent PL measurements 
is that the laser source used in PL measurements is expen-
sive and its lifetimes decrease over time. Therefore, it can 
be limiting to measure temperature-dependent PL in wide 
temperature ranges. The most effective way to eliminate 
this negative situation is to use machine learning technique. 
With this technique, it is possible to predict the behavior of 
temperature-dependent PL peaks without any experimental 
measurement necessity. Many studies have been reported on 
different applications of GaN-based thin films using machine 
learning technique. Torun et al. [27] conducted a study on 
the modeling of GaN-based Schottky diode characteristic 
with machine learning techniques based on experimental 
data in a wide temperature range. The work on optimiz-
ing GaN LEDs and reducing efficiency degradation using 
active machine learning was carried out by Humphreys 
et al. [17]. They concluded that this active learning strategy 

rapidly built a model of the devices that predicted Poisson-
Schrödinger simulations and simultaneously produced struc-
tures with higher simulation efficiency. Wang et al. [28] pro-
posed a machine learning supported model for GaN ohmic 
contacts for manufacturing processes. They stated that in the 
light of mature and powerful machine learning techniques, 
their work offered a new method to evaluate the fabrication 
processes of ohmic contacts in AlGaN/GaN heterojunction. 
Although there are different studies on GaN-based applica-
tions [29] with machine learning technique, no study has 
been found on the temperature-dependent PL characteristic 
of GaN thin films in the presence of machine learning tech-
nique until today. In terms of measurement and model, there 
is no limitation to apply to other semiconductors. Whenever 
the measurement result is obtained of the semiconductor 
sample, the proposed model can be applied to make some 
predictions even for semiconductors with high localized 
state density [30, 31]. In a previous study [32], an artifi-
cial neural network was used to model how the reflectance 
angle affects specular reflectance measurements of ZnO thin 
film. The model utilized a “Multi-Layer Perceptron (MLP)” 
and the back propagation algorithm, specifically Levenberg 
Marqued’s learning rule within an incident angle range of 
30–60 degrees. The study demonstrated that accurate and 
precise measurements can be obtained without the need for 
expensive hardware.

In this study, temperature-dependent PL characteristics 
of GaN epilayer grown on PSS by MOCVD were modeled 
by ANN for the first time. It was observed that there was an 
excellent agreement (R2 = 0.98 for model-1, R2 = 0.98 for 
model-2) between ANN model and experimental results.

Experimental details

Growth and characterization of GaN epilayer

The methodology of this study (shown in Fig. 1) consists of 
two work packages. These work packages include “epitaxial 
growth by MOCVD” and “characterization by PL.”

GaN epilayer was grown by MOCVD on patterned sap-
phire substrate (PSS) which shaped as dome. NH3, TMGa, 
and H2 were used for N source, Ga source, and carrier gas, 
respectively. The sapphire substrate was desorbed just before 
the growth at the high temperature (~ 1080 °C) for 10 min in 
hydrogen environment to remove any surface contaminants. 
Epilayer growth of GaN started with nucleation layer on sap-
phire substrate just after desorption at 480 °C and 200 mbar. 
The reactor temperature was increased to above 1000 °C at 
the same reactor pressure to grow main GaN epilayer. Two 
-step GaN growth technique with different NH3 flow rates 
was applied to have lower dislocation density epilayer [33, 
34].
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Detailed temperature-dependent PL measurements were 
carried out for optical characterization of the GaN sample. 
PL measurements were carried out by the 325 nm HeCd 
laser which focused on the 10 × objective lens for fixed laser 
power. The power of the laser with 100 mW was adjusted as 
10% by using ND (neutral-density) filters. The signal during 
the photoluminescence measurement was detected by the 
CCD detector and used 300 gr/mm 500 nm blaze grating.

Artificial neural networks (ANN)

An ANN is basically computational network, and the main 
objective is attempt to simulate the pattern recognition pro-
cess in networks of neurons as same as the biological central 
nervous system with in special algorithms. This process is 
neuron to neuron simulation and working principle is based 
on the neurophysiological structure of biological neurons 
and network architecture of this biological neurons. So, the 
main computing principles of ANN differ from traditional 
computing (analog or digital) machines and aim to serve 
to change and increase or speed-up to the organization of 
the computing elements based on modeling of the human 
brain [35]. Another specialty of ANNs is the ability of par-
allel computations (a traditional computer is a sequential 
structured machine). A simple architecture of the neural 
element of ANN (neuron) is shown in Fig. 2, which is the 

well-known simple part of every ANN. It investigates the 
differences in the weighting of input signals at the diverse 
interconnections (synapses).

In the literature, many types of different neural networks 
have been studied, and it is observed that all of them have 
the basic and similar principles [36]. Every neuron in the 
network has the capability to get input signals, to process, 
and to forward as an output signals. Neuron in the network 
is connected minimum with one neighbor neuron, and 
every connection is represented by a real number, called the 
weight coefficient, that reflects the degree of significance 
of the given connection in the NN [38]. The basic idea is 
modeling the strong predictive or pattern recognition capa-
bility, in other words, representing a random mapping of 
one vector space into another vector space [39]. Thus, the 
most important advantage of neural networks is that they 
can detect some hidden patterns in the data. The process 
of obtaining the pattern recognition is described as “ANN 
learning” or “ANN training.” Learning in mathematical form 
is accepted adjusting the weighting coefficients to model 
the system. Education is grouped under two main catego-
ries as supervised and unsupervised training. In supervised 
training, the neural networks have knowledge about the 
desired output, and the weighting factors are adjusted so 
that the desired and calculated output values are as close 
as possible. In unsupervised training, the desired output is 

Fig. 1   The methodology of this 
study: (a) the processes steps at 
epitaxial growth and (b) the PL 
measurement system we used

Fig. 2   A simple architecture of 
neuron [36]
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unknown by the networks, and a set of facts (patterns) are 
presented to the system and then left alone to settle (or not) 
into a steady-state in some cases number of iterations [38]. 
The most widely used learning algorithm in many different 
applications of ANN is the “Backpropagation Algorithm 
(BPA).” It is the most preferred learning algorithm because 
it is easy to understand and can be proved mathematically. 
This algorithm is called backpropagation since it tries to 
reduce the errors backwards from the output to the input. 
There are three basic operations that occur on the networks 
trained using the back propagation learning algorithm: the 
training input data set is fed in forward direction to the net-
work, the total error is calculated between the desired and 
calculated outputs and back propagated on the network, 
and the weights are rearranged [40]. The standard multiple 
backpropagation network always has an input, an output, 
and at least one hidden layer (Fig. 3). There is no accepted 
theoretical limitation about the number of hidden layers in 
network. Backpropagation algorithm is a general algorithm 
that falls under the supervised class of neural network. Any 
neuron in a specified layer is linked to all neurons in the next 
layer. The link between the Ith and jth neurons is defined by 
the weight coefficient wij and the Ith neuron by the thresh-
old coefficient vi (Fig. 3). The weight coefficients of weight 
reflects the degree of importance of the given connection 
in the neural network. The output value (activity) of the Ith 
neuron xi is determined by the equation of “Addition” layer 
given in Fig. 2.

The primary objective behind the most supervised learn-
ing algorithms is updating the ANN weight coefficients and 
the bias term coefficients until the mean squared error (Eq. 1 
and Eq. 2) between the output values predicted by the net-
work and the desired output are less than tolerance (Fig. 4).

Backpropagation, which is also known as the general-
ized delta rule and is formed from the generalization of the 

Widrow-Hoff (least squares method) learning rule for multi-
layer networks, basically consists of two steps in its nature. In 
the first step, the input data is spread to the network (Yij) to cal-
culate the network output value for each output unit through 
the input layers, hidden layers, output layers, and the existing 
connections between all these layers [41]. By comparing these 
calculated output values with the actual output values, the error 
value for each output cell is found. In the second step, these error 
values are presented to the network in the opposite direction and 
the updated necessary weights are calculated. The aim of the 
error back propagation method is to ensure that the total error of 
the network reaches its minimum value. Standard backpropaga-
tion is a gradient descent algorithm with the weights on the net 
moving at the negative part of the performance function slope. 
If the basic network operation equation is written for the unit 
(neuron) in the first hidden layer, represented by Z1 in Fig. 3.

As can be seen in Eq. 1, the output value, the neurons on 
a layer will produce, is the effect of the activation function of 
this neuron on the weighted sums of the neurons in the previ-
ous layer connected to it. The same equations are applied to 
the next layers. The created general model is given by Eq. 2.

(1)
Z1−Input = x1v11 + .. + xivi1 + .. + xNvN1 + v01

ZJ−Input = v0j +
∑N

i=1
xivij

ZJ−Output = f (Z��j − Input)

(2a)am
0∶j

=
(
xm
)
j
= xm

j

(2b)cm
i∶j

=

si−1∑

k=1

wi∶j,ka
m
i−1∶k .

+ bi∶j ……… i > 0,

(2I)am
i∶j

= Fi∶j

(
cm
i∶j

)
,…………… i > 0

(2d)am
i∶j

= Fi∶j

(
si−1∑

k=1

wi∶j,ka
m
i−1∶k .

+ bi∶j

)

(2I)am
L∶1

= ym

(2f)
1

2
‖ym − tm‖2 =

1

2

�
ym − tm

�2
= e2

m
= �m

Fig. 3   Feedforward multilayer neural network architecture [36]

Fig. 4   ANN data analysis steps
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Equality groups will be obtained. For I□1 in these 
equation groups, am

i−1
 response values are calculated for 

the layer I-1. It is presented to the network in the forward 
direction to determine the am

i
 response (computed) values 

required for the layer. Almost all of the training algorithms 
aim to ensure that the network output value is suitable 
with the intended values or the network error is small in 
line with the training sets presented to the network, and 
it is widely used with method parameters known as slope 
descent [42]. There are two most used approaches for slope 
calculation; the first approach is based on what is known as 
the chain rule, and the second approach is the backpropa-
gation approach. The chain rule for multivariate structures 
is as expressed in Eq. 3.

In BPA, the steepest-descent minimization method is 
used. For adjustment of the threshold coefficients and 
weights, it holds as in Eq. 4.

where □ is learning rate (0 >□ >1). The main interest of 
problem is calculation of the derivatives �E

�wij

 and �E
�vij

 [35]. 
AANs have been described as powerful function 
approximators.

Superior features of ANN are due to having many 
model parameters of which values can be learned from 
data as mentioned via gradient descent focused optimi-
zation algorithm. In cases where the data set to be used 

(3a)
df

dt
=

df

dx

dx

dt

(3b)
df (g(x))

dx
=

df (z)

dz
⌈z

(4)
w
(k+1)

ij
= w

(k)

ij
− �

(
�E

�wij

)k

v
(k+1)

ij
= v

(k)

ij
− �

(
�E

�vij

)k

for training is large, ANN is very successful in modeling 
the input–output relations, and with this aspect, it is a 
very effective method on the performance of tasks that 
will be considered as intelligent. In constraint, the flex-
ibility of ANN has a deficit: they are especially sensitive 
to overfitting. Overfitting is the algorithm’s ability to 
work through the training data to the lowest breakdown, 
memorize the results, and achieve success only on that 
data. The trained model starts to learn from observa-
tion that hidden patterns in the dataset. However, when 
models created in this way encounter new and previ-
ously unseen observations, they reduce your probability 
of making a successful prediction. The overfitting state 
is not unsolved problem for neural networks. Flexibil-
ity, one of the strengths of artificial intelligence, takes 
them particularly sensitive, and researchers have come up 
with many extensions to the known learning algorithm 
(early stopping, weight corruption, dropout, and so on) 
to reduce over-fitting [43]. Bayesian regularized artifi-
cial neural networks (BRANNs) are more powerful than 
known backpropagation algorithms net, and BRANN is 
a mathematical calculation that converts a non-linear 
regression into a fine-modeled statistical problem in the 
way of “a ridge regression.” The most powerful side of 
BRANNs is that the models are strong and the validation 
steps, which balance in normal regression process, such 
as standard back propagation, are not necessary. BRANN 
supplies methods to a number of troubles such as choice, 
stability, choice of validation data set, size of validation 
effort, and standardization of NN architecture. The based 
advantage is difficult to overtrain BRANN method, since 
proof procedures supply a practical Bayesian criterion in 
stopping training. Furthermore, overfitting of this is hard 
because the BRANN calculates and trains on a number 
of influential network parameters or weights, effectively 
turning off those that are not suitable [44].

Fig. 5   ANN data analysis steps
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Bayesian regularization‑backpropagation neural network 
(BR‑BPNN)

The classical backpropagation algorithmic aims to minimize 
the cost function 

∑n

i=1
(yi − ti)2 , in this equation, “n” is the 

number of inputs in the training set, “yi” is the “Ith” expected 
output, and “ti” is the “Ith” output obtained as neural network 
response (Eq. 2-f). In general, if the scale of NN is much less 
than that of training data set, the possibility of overtrain-
ing is little. But, it is hard to determine the scale of NN. In 
order to get a NN with the most appropriate performance 
and minimal parameters and tide effectively, the problem of 
overfitting BRBPNN presents network weights into training 
objective function.

Regard a NN topology with training dataset named D 
having nt input and output vectors pairs in the NN model, 
in Eq. 5.

For every input (u) to the NN, the differentiation 
between goal output and estimated output is calculated as 
an error value I. In order to interpret the efficiency of the 
NN, i.e., how fine the NN performance is matching the 
testing set, a quantitative measurement is necessary. This 
measurement operation is called performance index of the 
NN and is used to optimize the NN design parameters. The 
standard performance index “F” is managed by the sum of 
the squared errors (SSE) in Eq. 6, where w indicates the 
vector of size k containing all the weights and biases of 
the network.

To generalizing the NN, the performance index of Eq. 6 is 
changed using a regularization method. A penalty parameter 
“(μv)EW” is added in the performance index F(w), Eq. 7, 
where � and v are the regularization parameters and Ew rep-
resents the sum of the squared network weights (SSW).
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u1, t01
)
,
(
u2, t02

)
,… ,

(
unt, t0nt

)}

(6)F
(
w
)
= ED =
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(
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)2
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nt∑

i=1

(
y0i − t0i

)T(
y0i − t0i

)

(7)F
(
w
)
= �w

T
w + vED = �Ew + vED

Fig. 6   The PL spectra (a) 340–370  nm, (b) 370–400  nm, and (c) 
400–600 nm of GaN on PSS

Table 1   Dependent variable (input parameters)

Independent variable (input parameters)

X1 Wavelength, nm
X2 Temperature, K
Dependent variable (output parameters)
Y Intensity, a.u
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Determining the optimum valuations for v and � 
parameters is a challenging mission, as these parameter 
comparative values establish the basis for the training 
error. If � < < v, less errors are generated, while if � 
>  > v, there should be reduced weight size at the cost of 
network errors. For the aim of determining the optimum 
regularization values, a Bayesian regularization method 
is used [45]. When the trainings with BPNNRR ended, a 
less checks concerning the number of efficient parameters 
are necessary for preferable performance of the NN. The 
computing problem the Hessian matrix at the minimal 
point w is indirectly solved by Levenberg–Marquardt 
training algorithm (LM) while describing the minimum 
value of F(w ). By LM algorithm, the network weight 
values and bias values at the kth iteration are described 
according to Eq. 8.

where ʎ denotes the Levenberg’s damping factor, and JTe is 
the error gradient, which needs to be close to zero at end of 
the training [46].

(8)w
k+1

= w
k
−
[
JTJ + �I

]−1
JTe

A model establishment and preparation of the data 
set

The preparation of the database to be used for training is cer-
tainly the most influential factor in the success of the model 
during the design of the model’s architecture in applications 
developed using artificial neural networks [47]. Complex 
data analysis operations performed with ANN models can 
be summarized as shown in Fig. 5.

From the perspective of systems analysis, the initial part 
of this flow is the stage in which the problem is defined, its 
limits are set, roadmaps are drawn, the flow is administra-
tively created, and it is dominant over the processes of the 
whole model. The data set preparation in the second part is 
the creation of a data set that can respond to the results to be 
produced with the established model or system and model 
(represent) the problem in the best way. The structure and 
nature of the data set is very important for the model; it is 
the enlightening for decision makers about the problem as it 
will act as the trainer of the system to be trained. In the third 
stage, the ANN model, whose structure has been decided, is 

Fig. 7   Block diagram of devel-
oped model

Table 2   Model I train parameters

Hidden layer model [5 10 20]

Train algorithm Bayesian neural network
Momentum value 0.9
Train rate value 0.1
Train set temperature range (K) [20 40 80 120 160 200 240 280]
Test set temperature range (K) [60 100 140 180 220 260]
Data set wavelength range (nm) [340–370]

Table 3   Model II train parameters

Hidden layer model [5 10 20]

Train algorithm Bayesian Neural Network
Momentum value 0.9
Train rate value 0.1
Train set temperature range (K) [20 40 80 120 160 200 240 280]
Test set temperature range (K) [60 100 140 180 220 260]
Data set wavelength range (nm) [370 400]
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trained by iterative operations. By performing data mining 
with the results produced by the ANN model, comparisons 
are made on with the real results and then the success of the 
model is tested [48].

Results and discussion

Experimental model definitions and obtained data 
from this model

Figure 6 demonstrates the temperature dependency of PL 
spectrum of GaN epilayer grown on PSS.

The emission that appeared around 362 nm at 280 K cor-
responds to free excitons and shallow donor bound exci-
tons. The blue band emissions attribute to donor valance 
band transitions [20]. The yellow luminescence might be 
sourced for several reasons. It is known that the YL is most 
often attributed to defects such as either gallium vacancy 
(VGa)-related defects or carbon (C)-related defects. Although 
initial calculations showed that VGa defects or VGAON com-
plexes play an important role in the formation of YL, subse-
quent calculations predict that YL may be caused by isolated 
C defect, CN, or CNON complexes. Also, it is found that the 
YL can be sourced from VGaON-2H and VGa-3H complex 
[49]. The PL peak position of emission occurred at 280 K 
are 362 nm, 368 nm, 380 nm, 387 nm, and 550 nm. PL 
spectra of the GaN epilayer on PSS are dominated by band 
edge emission at 362 nm. The prominence of other peaks 
became much clearer with decreasing temperature resulting 
in increasing intensities of them. It is observed that there 
is a blue shift in the peak position of emissions at 362 nm, 
368 nm, and 380 nm with decreasing temperature. A defect-
related yellow luminescence peak which observed at around 
550 nm is seen also the PL spectra of GaN on PSS. It is also 
observed that the increase in the intensity of this peak with 
decreasing temperature is much less than that of the other 
peaks [20]. The Fabry–Perot interference patterns have been 
observed in Fig. 6(b) due to the refractive index variations 
of the interface layers between the GaN epitaxial layer and 
PSS substrate and GaN surface and air [50, 51]. The reason 
why these oscillations are not seen in the estimated data is 

because the refractive index difference of the layers is not 
taken into account in the algorithm used.

Establishment of artificial neural network model 
and training of the system

Two independent input variables and one dependent output 
variable given in Table 1 were obtained from experimental 
results.

Table 4   Model III train parameters

Hidden layer model [5 10 20]

Train algorithm Bayesian Neural Network
Momentum value 0.9
Train rate value 0.1
Train set temperature range (K) [20 40 80 120 160 200 240 280]
Test set temperature range (K) [60 100 140 180 220 260]
Data set wavelength range (nm) [400 600]

Fig. 8   Regression indicator for whole dataset in training of the model I

Fig. 9   Relationship between model I generated data and test dataset
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Intensity values measured at different temperatures and 
different wavelengths with the established experimental 
setup were created for training the ANN model and design-
ing the system, as shown in Fig. 6. These temperature values 
were measured at 14 different temperatures as (20, 40, 60, 
80, 100, 120, 140, 160, 180, 200, 220, 240, 260, and 280 K), 
at minimum 330.06 and maximum 600 nm wavelengths.

When the graph of the data produced because of the 
experiments is examined, it is understood that the meas-
urement results show different behavior in different inter-
vals (Fig. 6). Modeling these effects not on the entire ANN 

system but at its own limits will increase the success of the 
system. For this reason, the system will be designed and 
trained as three different ANN models (named as model I, 
model II, and model III) that behave in different wavelength 
ranges (Fig. 7). Thus, the success of the system will sup-
port the experimental model at higher degrees. Model I is 
trained to generate intensity values produced at wavelengths 
between 340 and 370 nm. The values obtained in this range 
behave non-linearly. An ANN architecture is preferred to 
best model this behavior (Table 2). The model II is trained to 
generate intensity values produced at wavelengths between 

Fig. 10   (a) 60 K temperature results, (b) 100 K temperature results, (c) 140 K temperature results, (d) 180 K temperature results, (e) 220 K tem-
perature results, and (f) 260 K temperature results
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370 and 400 nm (Table 3) and the last, and model III is 
trained to generate intensity values produced at wavelengths 
between 400 and 600 nm (Table 4).

During the training of ANN models, the training dataset 
is divided into three parts to test the learning. ANN models, 
which offer good approximations, are directly related to the 
fact that the datasets used for their training represent the pro-
posed problem. To protect the models developed within the 
framework of ANN from the disadvantages summarized in 
the previous sections, the training set should be fragmented 
and presented for training the model. If you want to con-
struct a trustworthy ANN model, you need to separate your 
dataset into the training part, test part, and validation part 
sets. The training set is used to train and perform the model 
learn the hidden patterns in the dataset. The validation set is 
apart from the training set, and it is used to validate model 
performance during training phase. This validation opera-
tion serves information about that helps to tune the model’s 
hyperparameters and configurations accordingly. The test 
set is used to test the model performance and truth after 
completing the training. The basic processing algorithms of 
the proposed model are carried out as summarized below.

1.	 All experimental data were recorded in the specified 
“Temperatures” and “Wavelengths” ranges

2.	 In this study, measurements were made for approxi-
mately fourteen temperature values

3.	 The created dataset is divided into three parts as datasets 
to be used in training the ANN model and testing the 
ANN model (temperature values are taken as the separa-
tion parameter)

4.	 The measurements of eight temperature values are 
reserved for the training of the models, and the meas-
urements of six temperature values are reserved for the 
testing of the created models

5.	 Trainings were conducted using the training dataset cre-
ated in step four on the determined ANN parameters.

6.	 The data values of the eight temperatures used during 
the trainings are specified in the model as 75% training, 
15% validation, and 15% test during the training stages 
of the ANN

7.	 By updating the ANN parameters, the metrics were ana-
lyzed, and the most successful model was determined for 
the system to provide the optimum result

8.	 Model performance was verified over the values pro-
duced for the test data set determined in the 4th step by 
using various parameters over the trained ANN models

Training of the model in the 340–370‑nm 
wavelength range (model I)

When the measurement data were examined, it was observed 
that the measurement results in this region are more variable. 

In the established ANN model, it is aimed to model these 
behaviors of the measurements in the best way. For this rea-
son, the number of hidden layers in the artificial neural net-
work model, which will affect the success of the system, and 
the number of neurons in the layers have been focused on.

The regression indicators of model 1 (y – ŷ) trained on the 
parameters shown in Table 2 were created with high perfor-
mance as shown in Fig. 8. This model was obtained from the 
data presented to the system as a training set.

Fig. 11   Regression indicator for whole dataset in training of the 
model II

Fig. 12   Relationship between model II generated data and test dataset
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The test data group, which was never presented in the 
training of the model, was presented to the developed ANN 
model to verify the performance of the model. When the out-
puts produced by the model were compared with the experi-
mental outputs of the test data set, the success of the model 
was confirmed with the regression graph shown in Fig. 9. 
The most effective way to test system success is to examine 
the outputs generated by the model using data it has never 
seen. In other words, it is the similarity of the data measured 
in reality and the data produced by the ANN model.

As seen in Fig. 9 and understood from the R value, the 
trained ANN models the measurements in the study area at 
very high rates. In order to more clearly show the accuracy 

of the model, the outputs of the model and measured data 
for each temperature value in the test dataset are examined 
in the graphs in Fig. 10.

Training of the model in the 370–400‑nm 
wavelength range (model II)

When the data in this range were trained together with 
those in the other ranges, significant deviations were 
observed, especially between the measured values and the 
predicted values. To protect the whole system from the 
effects of these deviations, the data was included in the 
system by training as model II in the range of 370–400. 

Fig. 13   (a) 60 K temperature results, (b) 100 K temperature results, (c) 140 K temperature results, (d) 180 K temperature results, (e) 220 K tem-
perature results, and (f) 260 K temperature results



1156	 Journal of the Australian Ceramic Society (2023) 59:1145–1159

1 3

The representation rate of the results obtained was 
observed as more acceptable. The parameter values used 
for the training of model II are shown in Table 3. After 
the training is completed, the correlation graphs of the 
training data produced by model II are given in Fig. 11, 
and the correlation graphs of the test data are given in 
Fig. 12. Model and measured data for each temperature 
value in the test dataset are examined in the graphs in 
Fig. 13.

Training of the model in the 400–600‑nm 
wavelength range (model III)

As can be seen from Fig.  6, experimental data in the 
400–600 nm wavelength range show more linear behavior. 
For this reason, it is possible to train with a simpler ANN 
model. Such training will positively affect the calculation 
time and success of the system The regression indicators 
of model III (y – ŷ) trained on the parameters shown in 
Table 4 were created with high performance as shown in 
Fig. 14. This model was obtained from the data presented 
to the system as a training set.

When the outputs produced by the model were com-
pared with the experimental outputs of the test data set, the 
success of the model was confirmed with the regression 
graph shown in Fig. 15.

The outputs of the model III and measured data for each 
temperature value in the test dataset are examined in the 
graphs in Fig. 16.

As it can be seen clearly from prepared three models, 
one of the key advantage of this study lies in the utilization 
of ANNs for the modeling of temperature-dependent PL of 
GaN epilayers. Unlike previous research which has explored 
various modeling techniques, including physical models and 
empirical fitting approaches, the application of ANNs specif-
ically for this purpose is relatively unexplored. ANNs offer 
a data-driven approach that can capture complex non-linear 
relationships without the need for explicit physical models. 
By training on a large dataset comprising temperature and 
corresponding PL intensity values, the ANN model can learn 
the underlying patterns and make accurate predictions for 
unseen data points.

Conclusions

In the present study, first, PL measurements were carried 
out in different temperature ranges of the GaN layer grown 
by the MOCVD method. The data in the temperature values 

[20 40 80 120 160 200 240 280] were used for the training 
of three different models in the specified intervals, and the 
ANN model was created. To test the accuracy of the model, 
different temperature data, which were previously measured 
but never used in the training of the ANN, were used ([60 
100 140 180 220 260]). 478 different measurement data in 

Fig. 14   Regression indicator for whole dataset in training of the 
model III

Fig. 15   Relationship between model III generated data and test dataset
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the 340–370-nm range, 478 different measurement data in 
the 370–400-nm range, and 3186 different measurement data 
in the 400–600-nm range are used.

One of the important optical characterizations is photo-
luminescence and its temperature dependent measurement. 
The temperature-dependent measurement of photolumines-
cence is disadvantageous in terms of both time and cost. 
Therefore, in this study, the ANN model has been studied to 
get rid of these disadvantages. Therefore, the PL behavior 
of the GaN layer has given us an important advantage in this 
sense. In other words, instead of making too many measure-
ments experimentally, PL at the desired temperatures was 

estimated by applying the ANN model. As a result, it has 
been seen that accurate information about the optical behav-
ior of GaN-based materials at different temperatures can be 
obtained. To prove it, the experimental data obtained and 
the ANN model were compared. While the ANN model was 
being developed, it was observed that the similarity rates of 
the outputs produced by the experimental and ANN models 
were high with the changes made on the system parameters 
of the ANN. The R2 values of the test data produced conver-
gent results very similar to the R2 values of the training data.

For the first time in the literature, process models using 
ANN made it possible to predict results within unknown 

Fig. 16   (a) 60 K temperature results, (b) 100 K temperature results, (c) 140 K temperature results, (d) 180 K temperature results, (e) 220 K tem-
perature results, and (f) 260 K temperature results



1158	 Journal of the Australian Ceramic Society (2023) 59:1145–1159

1 3

(not experimentally obtained) temperature values by mod-
eling intensity values at certain wavelengths for different 
temperature values made in this study. At the same time, it 
is possible to have information about the optical behavior 
of GaN-based materials at different temperatures by reduc-
ing the number of temperature-dependent PL measurements 
with the ANN model.
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