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1. Introduction

Schottky barrier diode (SBD) is called metal–semiconductor
diode and it has an important role in the area of electronic circuit
elements industry and technology. SBDs are frequently used
in many fields such as switching circuits, solar cells, semicon-
ductor detector applications, microwave circuit elements, and
modulators.[1–3] The quality of the interface depends on between
deposited Schottky metal and semiconductor surface and it plays
an important role in the electrical performance of the SBD.

Surface defects and native oxide at the
metal/GaAs interface can cause problems
with the traditional method of manufactur-
ing connections, which involves the depo-
sition of metallic coatings on GaAs.[4–9]

Thermal annealing behavior of SBDs is
of great interest for both scientific and
technological reasons.[4,5] Due to thermal
annealing, thermodynamics can be used
to explain interdiffusion, contaminations,
chemical reactions, compound formation,
interface roughening, defect generation,
dopant migration, a flat diode interface,
etc.[8–10] The performances of SBDs are
largely determined by the quality of the
interface between the deposited Schottky
metal and the semiconductor surface.[9]

The most preferred method to improve
the stability and performance of metal
semiconductor diodes is the thermal
annealing of the metal–semiconductor
structure after the necessary metal
contacts are formed on the surfaces of

the semiconductor substrate. With this method, the Schottky
barrier height can be improved by means of reactive or
refractory (resistant to high-temperature annealing) metals
evaporated as Schottky contact (rectifying contact) to the
semiconductor surface. Also, the reactive metal reduces the
native oxide layer and reacts with the semiconductor substrate
during annealing even for metal deposition at room
temperature.[6–8] A reacted contact has a substantially higher
quality than an unannealed sample and is thermodynamically
stable.[7,8]

Today, progress in computer technologies has triggered the
development of artificial intelligence. Therefore, artificial intelli-
gence has attracted the attention of many researchers in the fields
of physics, engineering, and health. Also, it is effectively used in
the solution of many scientific problems.[11–16] Artificial intelli-
gence is known the transfer of human abilities to computers with
the aid of machine learning. At this point, machine learning
plays an important role. Classification, clustering, and regression
are popular machine learning techniques. Especially, the regres-
sion methods analyze the modeling of one or more input predic-
tors for an output response. Thus, it is possible to model many
systems using input and output data and to predict possible
output values for new inputs through these designed models.
In recent years, regression trees, linear regression (LR), support
vector machines (SVM), and Gaussian process regression
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Herein, for Ni/n-GaAs/In Schottky barrier diode, experimental measurement,
modeling, data generation from the model, and parameter estimation processes are
simultaneously carried out. In the experimental step, Ni/n-GaAs/In Schottky barrier
diodes are fabricated and annealed from the temperature of 200 °C up to 600 °C with
100 °C steps. Current values are recorded by applying voltage to the diode contacts
from �1 V up to 0.5 V. In the modeling step, 1503 experimental current–voltage
data are used for 19 different regression models. For Adaptive Neuro Fuzzy System
(ANFIS), when root mean square error, mean square error, mean absolute error,
and coefficient of determination are calculated 6.0341e-07, 3.6410e-13, 2.3873e-07,
and 0.9999 for training, they are obtained 5.8904e-07, 3.4697e-13, 2.3083e-07, and
0.9999 for testing. In the estimation step, the values of electrical parameters are
estimated by using Mayfly algorithm. Estimations are performed for all annealing
temperatures. In addition, current–voltage data for the annealing temperature of
350 °C are produced by the ANFIS model. Thus, a new-generation artificial intel-
ligence application, that includes measurement, modeling, and estimation for the
Ni/n-GaAs/In Schottky barrier diode with varying annealing temperatures, is
realized and a new perspective is provided to researchers and practitioners.
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(GPR) techniques are effectively used in system modeling for
regression.[17–19]

In the literature, many different machine learning methods
have been successfully realized in the modeling of current–
voltage (I–V ) characterization of the SBDs. This topic has
attracted the attention of researchers and SBD models have been
created for different measurement temperatures and semicon-
ductor materials. Torun and Dogan produced Au/Ni/n-GaN/
undoped GaN SBD and measured current and voltage values
of SBD between 40 K and 400 K temperatures. In addition, volt-
age measurements were made between�2 andþ2 V. Thus, 5192
data were obtained for I–V characteristics in total. Using mea-
sured data, a system is modeled to estimate current values using
Adaptive Neuro Fuzzy System (ANFIS). In this model, when the
voltage and temperature are inputs, the current is output. The
performance of the proposed model was compared with those
of the other machine learning methods such as SVM and
GPR for training and test phases. For training and test phases,
root mean square (RMSE) error results of proposed model are
6.231e-06 and 6.806e-06, respectively.[20]

Güzel et al. designed a model of 6H–SiC/MEH-PPV SBD.
Similarly, when the temperature and voltage data are input,
the current data are output. In this model, artificial neural net-
work (ANN) is used for model design and the measured current
data were collected between 100 and 250 K temperatures. Also,
the voltage measurement is realized between �3 and þ3 V. For
suggested ANN model, mean square error (MSE) and coefficient
of determination (R) values are obtained 1.63e-08 and 0.99999,
respectively.[21] Çolak et al. performed temperature measure-
ments between 100 and 300 K and voltage measurements
between �2 V and þ3 V for the SBD model. They created a
model using ANN with feed-forward back-propagation using
362 measured experimental data. Thus, they tried to estimate
the I–V characteristic of the SBD. For proposed ANN model,
MSE and R values are obtained 7.65906e-07 and 0.99992,
respectively.[22]

Recently, while the characterization modeling of the SBDs
with machine learning techniques are realized in the literature,
the electrical parameter estimation of SBD come to the fore.
Various artificial intelligence methods, such as optimization
and neural networks, have been used for parameter estimation
of SBD. Güzel and Çolak proposed a machine learning method
to estimate the characteristic parameters of SBD. An ANNmodel
was developed using 368 experimental data. The margins of error
for the ideality factor (n) and the series resistance (Rs) were found
to be 1.645 and 5.694, respectively.[23] Olikh studied the parame-
ter estimation of SBD using I–V characteristics. Barrier height
(ϕb), n, and Rs parameters were estimated using ten analytical
methods, four optimization algorithms, and two analytical meth-
ods. The advantages and disadvantages of the proposed methods
are presented.[24] Chang et al. investigated the parameter estima-
tion of SBD by genetic algorithm (GA) using experimental data.
The proposed approach gave better results than those of the
Cheung method.[25] Karaboga et al. proposed an approach-based
modified artificial bee colony (ABC) algorithm for parameter
estimation. Estimation performance of ABC algorithm was com-
pared with those of the particle swarm optimization (PSO) and
differential evolution (DE). Proposed approach gives satisfactory
results.[26] Güzel and Çolak suggested an ANN method with

capacitance–voltage (C–V ) data for 6H-SiC/MEH-PPV/Al SBD.
In total, 480 experimental data were employed. For the proposed
approach, MSE and R values are calculated 4.34e-06 and 0.99728,
respectively.[27] Rabehi et al. proposed an approach-based equilib-
rium optimizer algorithm for parameter extraction of SBD. The
performance of the employed optimization algorithm was com-
pared with those of the Cheung and Kaminski methods. For the
suggested approach, ϕb, Rs, and n are calculated 0.62 eV, 16.21Ω,
and 1.88, respectively.[28]

In this study, Ni/n-GaAs SBD contacts were fabricated and
annealed from the annealing temperature of 200 °C up to
600 °C with 100 °C steps. In the thermal annealing process,
the furnace was heated to the desired annealing temperature.
Then, the SBD contacts were annealed for a certain time in
the furnace. After cooling, the SBD contacts were ready for mea-
surement and I–Vmeasurements were realized at room temper-
ature. Here, the aim of annealing is to make the annealed
Schottky contacts more stable than the unannealed Schottky con-
tacts in the point of thermodynamics.[9] It should be noted that
I–V measurement at changing room temperature with the aid of
helium cryostat is not the same as I–Vmeasurement at changing
annealing temperature. For each annealing temperature, voltage
measurement was carried out from �1 V up to þ0.5 V with
0.005 V steps and the current values corresponding to the voltage
values were recorded. Thus, in total, 1503 data were obtained. In
order to model I–V characteristic of Ni/n-GaAs SBD for anneal-
ing process, five different regression analysis methods and their
subgroups, which are frequently used in the literature, were used
together with ANFIS because, in the literature, these aforemen-
tioned methods can give successful results for the modeling of
semiconductor processes with nonlinear and uncertain charac-
teristics such as thermal annealing. Finally, the thermal anneal-
ing process was modeled using 19 different regression analysis
methods with 1503 measured data. Then, all models are com-
pared for different error performances. Thus, using the success-
ful model of SBD, I–V dataset can be produced for the desired
annealing temperature without costly and time-consuming
experiments. One of the most innovative aspects of this work
is that the I–V modeling of Ni/n-GaAs SBD is first analyzed
for the thermal annealing process because, herein, I–Vmeasure-
ments were made for five different annealing temperatures. This
situation is not included for any study in the literature. For exam-
ple, Dogan et al. proposed an ANN method for I–V characteristic
model of annealed and unannealed Ni/n-type 6H–SiC SBD. In
that model, the I–V measurements were realized between tem-
perature of 80 and 500 K. However, only 900 °C is determined for
thermal annealing of Ni/n-type 6H–SiC SBD. As a result, the
analysis of the thermal annealing process, which cannot be
expressed with any mathematical formula such as thermionic
emission equation, was carried out in this study.[7–9]

After modeling the I–V characteristic of SBD for thermal
annealing, unlike other studies in the literature, I–V data were
generated for the annealing temperature of 350 °C, which was
not used in the training and testing stages. And, its accuracy
was demonstrated. Thus, the desired I–V data of SBD were
achieved without additional experiment and the abovementioned
objectives were realized for modeling using regression methods.

In addition, for annealing temperatures of 200, 300, 400, 500,
600, and 350 °C, electrical parameters of SBD were quickly
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estimated from I–V characteristics with high precision by
artificial intelligence algorithm. For electrical characterization
of SBD, Mayfly algorithm (MA) was first used in the literature
for the estimation of the n, ϕb, and Rs values because this algo-
rithm gave more successful results in solar cell parameter esti-
mation than those of other used optimization algorithms.[29] In
addition, recently, the MA has been used successfully in solving
many current scientific problems.[30–33] Especially, in the electri-
cal parameter estimation of SBD, an artificial intelligence
approach was applied instead of classical methods, such as Ln
I–V, Norde, and Cheung. So, for the whole I–V data of forward
biasing, electrical parameter estimation was performed without
additional functions or methods.

To the best of our knowledge, there is no article in the litera-
ture that includes experimental fabrication and measurement,
modeling I–V characteristic, data generation, and electrical
parameter estimation of Ni/n-GaAs/In SBD for varying thermal
annealing temperature. In addition, all these stages were
practically carried out with new-generation method-based
artificial intelligence algorithms. Figure 1 shows the flow chart
of three-stage application.

2. Experimental Section

2.1. Experimental Details

In this article, silicon-doped n-type GaAs with a (100) oriented
free carrier density of 7.3� 1015 cm�3 was used.[9] For 5min,
the wafer was successively degreased in trichloroethylene,
acetone, and methanol. For 1min, H2SO4:H2O2:H2O (5:1:1)
was used to etch the degreased wafer for removing any surface
damage and unwanted contaminants. The metal was evaporated
to the matte side of the cleaned GaAs surface using the thermal

evaporation method. Then, in order to further reduce the
resistance of the ohmic contact, the backside ohmic contact
was formed by annealing in N2 environment at 300 °C for
3min. Schottky contacts were formed as dots with a diameter
of about 1.5 mm on the faceplate of the parts using Ni evapora-
tion. The Schottky contacts were created on the front face of the
parts as dots with a diameter of approximately 1.5mm using Ni
evaporation. The vacuum coating unit was used for all evapora-
tion processes at a pressure of roughly 10�5 mbar. In an environ-
ment of N2, a quartz tube furnace was used to conduct the
thermal annealing. After SBD production, the diodes were
annealed in a N2 environment from annealing temperature
of 200–600 °C with 100 °C steps for 1min. Keithley’s 487
Picoammeter/Voltage source was used to measure the I–V char-
acteristics of SBDs in the dark at room temperature.

2.2. Modeling of I–V Characteristic of Ni/n-GaAs/In SBD

In this study, as explained in the previous section, 1503 I–V data
were obtained from the thermal annealing process. When 80% of
this data were randomly allocated for the training phase, 20% of
this data were selected for the testing phase.[34] So, 1203 and 300
data were selected for training and testing, respectively. In addi-
tion, annealing temperature and voltage were configured as
inputs and current was determined as output in model creation.

ANFIS, LR, trees regression (TR), SVM, ensemble tree, and
GPR methods were used to model the Ni/n-GaAs/In SBD for
thermal annealing. LR has four subgroups: linear, interactions,
robust, and stepwise. LR is a well-known method used for linear
and continuous variables. TR has three subgroups as fine,
medium, and coarse. TR is a decision tree included in regression
methods and it can be used to predict continuous value outputs.
Linear, fine, medium, and coarse Gaussian kernels are four

Figure 1. Flow chart of three-stage application and highlights of this study.
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subgroups of SVM.[35] SVM is a machine learning method that
finds a decision boundary between the two classes that are
furthest from any point in the training data.[36] GPR has five sub-
groups including rational quadratic, squared exponential, matern
5/2, matern 3/2, and exponential kernels.[37] It is a nonparamet-
ric regression model that can predict unknown output value
using the Gaussian Process. Ensemble of regression tree and
bootstrap-aggregated of regression tree models are the other
two types of efficient tree models. In the literature, the above-
mentioned methods have been successfully used for SBDmodel-
ing and comparative performance evaluation was made.[20]

However, in this study, the all values of MAE, MSE, RMSE,
and R functions applied by aforementioned methods are also
demonstrated as a plus feature.

The aforementioned 19 regression methods were realized to
model I–V characteristic of Ni/n-GaAs/In SBD for thermal
annealing process using 1203 training and 300 test data.
Then, for both training and test stages, the performances of com-
petitor methods were compared using error functions such as
mean absolute error (MAE), MSE, and RMSE.[20–22] MAE,
MSE, and RMSE functions give current values and their units
are ampere (A).

MAE ¼ 1
n

Xn
i¼1

jIei � Iesti j (1)

MSE ¼ 1
n

Xn
i¼1

ðIei � IestiÞ2 (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðIei � Iesti Þ2
s

(3)

where n is the data sample number, Ie is the experimental cur-
rent, and Iest is the estimated current by regression models. Also,
the other performance indicator is R and it is given as[23]

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Pn
i¼1 ðIei � IestiÞ2Pn

i¼1 ðIeiÞ2
s

(4)

The MAE error is the average of the absolute values of the dif-
ference between the actual and predicted values. It is used in
regression analyzes where negative errors are considered. In
MSE, the mean of the squares of the difference values is calcu-
lated. So, from the perspective of mathematics, high estimation
errors become more visible than small estimation errors. RMSE
is the square root of MSE and it shows better error performance
than MSE. RMSE not only preserves the mathematical visibility
of estimation errors, but also helps to calculate the error in its
true unit. For the aforementioned reasons, to analyze the error
performance of proposed studies, the calculation of MAE,
MSE, RMSE, and R values are frequently used by many
researchers.[15,20,23,27,29]

2.2.1. Declaration of ANFIS

In recent years, ANFIS has emerged as a method used in regres-
sion analysis. It is proposed by Jang in 1993 and employed for
nonlinear modeling using the fuzzy logic and ANN.[38] ANFIS

contains an adaptive inference model that is consisted in
Mamdani or Takagi–Sugeno inference model.[39] The complete
system occurs in five stages. These stages are fuzzification,
product, normalized, defuzzification, and output, respectively.

In this study, for the modeling of Ni/n-GaAs/In SBD, ANFIS
is realized and it uses an algorithm to recognize parameters of
Sugeno-type fuzzy inference system. For ANFIS, X and Y inputs
are voltage (V ) and annealing temperature (T ) and f output is the
current of Ni/n-GaAs/In SBD. Type of Sugeno fuzzy inference
systems has m fuzzy rules; type of Sugeno fuzzy inference
systems has two fuzzy rules:

Rule 1: If (voltage is A1) and (annealing temperature is B1),
then f 1 ¼ p1V þ q1T þ r1

Rule m: If (voltage is A2) and (annealing temperature is B2),
then f 2 ¼ p2V þ q2T þ r2

In this rules, while A1, A2 and B1, B2 are nonlinear
parameters, other parameters are linear. ANFIS architecture is
shown in Figure 2. In stage 1, voltage and current are the input
of nodes A1, B1 and A2, B2, respectively. A1, A2, B1, and B2 are
the linguistic labels used in the fuzzy theory for dividing
the membership functions. The membership relationship can
be expressed as follows

O1,i ¼ μAi
ðxÞ, i ¼ 1, 2

O1,j ¼ μBj
ðyÞ, i ¼ 1, 2 (5)

where O1,i and O1,j denote the output functions and μAi and μBi
denote the membership functions. In stage 2, it consists of two
nodes labeledΠ. The outputW1 andW2 are the weight functions
of the next layer. The output of this stage is the product of the
input signal, which is defined as follows

O1,i ¼ wi ¼ μAiðxÞμBiðyÞ, i ¼ 1, 2 (6)

where O2,i is the output of stage 2.
In stage 3, nodes are labeled N. The function of this stage is to

normalize the weight function in the following process

O3,i ¼ wi ¼
wi

w1 þ w2
, i ¼ 1, 2 (7)

where O3,i is the output of stage 3. In stage 4, defuzzification is
realized. The nodes are adaptive nodes. The relationship can be
defined as the following

Figure 2. ANFIS architecture.
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O4,i ¼ wiðpix þ qiy þ riÞ, i ¼ 1, 2 (8)

where O4,i is output of stage 4. And pi, qi, and ri are the linear
parameters of the node.

In stage 5, node is labeled as Σ. The output is composed of all
the ingredients of the inputs, which represents the results of
cleaning rates. The output can be expressed as follows

O5,i ¼
X
i

wif i ¼
P
i
wif iP
i
wi

, i ¼ 1, 2 (9)

where O5,i is the output of stage 5.

2.3. Parameter Estimation from I–V Characteristic of SBD

2.3.1. Parameter Estimation Problem and Objective Function

The general I–V formula of SBD can be suggested as[23,26,40]

I ¼ AA�T2exp � qϕb

kT

� �
exp

qðV � IRsÞ
nkT

� �
� 1

� �
(10)

where AA�T2exp � qϕb
kT

� �
is the saturation current I0. A* is the

effective Richardson constant and equals to 8.16 A cm�2 K2

for n-type GaAs, A is the diode area (1,767� 10�2 cm), and T
is the ambient temperature in Kelvin. n is a measure of the
diode’s fitness for pure thermionic emission. It should ideally
be equal to one. However, the value of n usually has a value
greater than one. Voltage and current of diode terminal are V
and I, respectively.

An artificial intelligence optimization algorithm needs an
objective function to solve the desired problem. The objective
function is a mathematical model consisting of the parameters
to be found. In particular, the optimization algorithm finds the
desired parameters by minimizing the defined objective func-
tion. Here, using Equation (10), the objective function can be
constructed as follows for parameter estimation of Ni/n-GaAs/
In SBD.[26,40]

ObjðFðIexp,Vexp,PestÞ¼RMSE

 
Iexp�AA�T2exp �qϕb

kT

� �

exp

 
qðVexp�IexpRsÞ

nkT

!
�1

" #! (11)

where Iexp and Vexp are the experimental current and voltage
values. Rs is the neutral region resistance. The unit of objective
function is current. In this study, the MA algorithm optimized
the desired n, ϕb, and Rs values by minimizing the objective
function using the measured current and voltage values.

2.3.2. MA

Zervoudakis and Tsafarakis proposed MA in 2020.[41] This
algorithm is an artificial intelligence algorithm that models
the mating and flight styles of mayfly insects. The MA has
been very successful in solving many optimization problems.

In particular, it has shown a very good solution performance
compared with many optimization algorithms in the problem
of estimating the parameters of solar cells by many researchers
and practitioners. The pseudocode structure of the MA algorithm
is given in Figure 3.

3. Results and Discussion

In this section, the results and discussions are examined in two
separate sections as the modeling of the Ni/n-GaAs/In SBD and
the estimation of its electrical parameters. In the modeling, for
the varying annealing temperatures, the performances of all the
regression methods were analyzed in training and testing
phases. Performance indicators are tabulated and the compari-
son figures are demonstrated for aforementioned situations.
In the estimation, for annealing temperatures of 200, 300,
400, 500, 600, and 350 °C, the electrical parameters of SBD were
estimated from the I–V characteristics by using MA. In particu-
lar, the I–V data of 350 °C were produced from the proposed
regression model of SBD without experimental procedure.
And this is taken into account in parameter estimation. In this
study, regression models and electrical parameter estimation
were developed with the aid of MATLAB platform. All computa-
tional procedures were performed on a computer with Intel(R)
Core(TM) i5 processor, 8 GB Ram and Windows 10 software.

3.1. Modeling of Ni/n-GaAs/In SBD

Ni/n-GaAs SBD contacts were fabricated and annealed from
temperature of 200 °C up to 600 °C with 100 °C steps. For each
annealing temperature, voltage source was applied to the con-
tacts from �1 to þ0.5 V with 0.005 V steps. Measured I–V data
were recorded. In total, 1503 I–V data were recorded. When 1203
data were randomly allocated for training, 300 data were selected
for testing. In all regression models, when voltage and annealing
temperature data were determined as inputs data, diode current
data were defined as output data. In Table 1, calculated RMSE,
MSE, and MAE values of all linear regression methods were
shown for both training and testing phases. Also, R values were
tabulated.

Basic (BLR), interactions (ILR), robust (RLR), and stepwise
(SLR) regressions were the LR methods and they were used
in the modeling of SBD using training and test data. ILR and
SLR achieved same error values and their performances were
better than those of the BLR and RLR. For ILR and SLR, when
RMSE, MSE, MAE, and R were 1.8956e-04, 3.5932e-08, 8.6338e-
05, and 0.4263 for training, they were 1.8439e-04, 3.4000e-08,
8.5468e-05, and 0.4294 for test, respectively. In general, when
RMSE values decreased to zero, R values increased to one.
Then, fine tree (FTR), medium tree (MTR), and coarse tree
(CTR) regressions were applied. When FTR achieved good
estimation results, MTR and CTR showed worse performance.
For FTR, when RMSE, MSE, MAE, and R were 2.2429e-05,
5.0304e-10, 5.1910e-06, and 0.9943 for training, they were
2.9596e-05, 8.7591e-10, 6.5527e-6, and 0.9894 for test, respec-
tively. SVM algorithms with linear (LSVM), fine Gaussian
(FGSVM), medium Gaussian (MGSVM), and coarse Gaussian
(CGSVM) kernels were implemented for the modeling of
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SBD. FGSVM obtained best error values. For FGSVM, when
RMSE, MSE, MAE, and R were 9.7843e-07, 9.5732e-13,
8.1908e-07, and 0.9999 for training, they were 9.7343e-07,
9.4756e-13, 8.1845e-07, and 0.9999 for test, respectively. The fine
Gaussian kernel improved the performance of SVM compared to
others. As suggested in the literature,[20] SVM with Gaussian
kernel has a good performance for the modeling of SBD com-
pared to the other SVM kernels. Rational quadratic (RQGPR),
squared exponential (SEGPR), exponential (EGPR), matern 5/2
(M5/2GPR), and matern (M3/2GPR) were the kernels of GPR.
Each kernel was again applied to the aforementioned rules for
the modeling of SBD. In general, proposed kernels performed
similarly, but M3/2GPR was achieved best results. For
M3/2GPR, when RMSE, MSE, MAE, and R were 1.9433e-04,
3.7764e-08, 7.0092e-05, and 0.3779 for training, they were
1.8838e-04, 3.5488e-08, 6.9204e-05, and 0.3820 for test, respec-
tively. Ensemble boosted tree (EBOT) and bootstrap-aggregated
tree (EBAT) regression were employed. For EBOT, RMSE,
MSE, MAE, and R were 2.5319e-05, 6.4104e-10, 3.9802e-06,
and 0.9927 for training, they were 2.1918e-05, 4.8041e-10,
5.3415e-06, and 0.9942 for test, respectively. The best error values
among all algorithms were obtained with the ANFIS model.
When RMSE, MSE, MAE, and R were 6.0341e-07, 3.6410e-13,
2.3873e-07, and 0.9999 for training, they were 5.8904e-07,
3.4697e-13, 2.3083e-07, and 0.9999 for test. In the previous
study by Torun and Dogan, for ANFIS, when RMSE, MSE,

and MAE were obtained 6.806e-06, 4.632e-11, and 3.914e-06
for test, they were achieved 6.231e-06, 3.883e-11, and 3.782e-
06 for train, respectively.[20] According to these results,
ANFIS reached small error values in two different modeling
studies of SBD compared to other regression methods.
In aforementioned study, room temperature is changed between
40 and 400 K. And, in this study, annealing temperature is
changed between 200 and 600 °C. Also, in this article, for
ANFIS, grid partitioning was used to generate fuzzy inference
system from the measured I–V data and generalized bell-shaped
membership function was chosen. In the other aforementioned
study, subtractive clustering with 0.25 radii was applied for
ANFIS.

As seen from the results, when all competitor regression
methods were compared, the ranking of performances was
ANFIS/FGSVM, FTR, EBOT, MGSVM, EBAT, MTR, CTR,
CGSVM, SLR/ILR, BLR, M3/2GPR, RQGPR/EGPR/M5/
2GPR/SEGPR, LSVM, and RLR. Although the aforementioned
regression methods have different application conditions and
complexities, this ordering shows that each of the methods
achieved different results for the modeling of SBD. For example,
although FGSVM is a variant of SVM, it performed better than
other SVM types and was in second place after the ANFIS
method. This is the explanation why the comparison table of
all regression methods is given in such detail for training and
test phases.

Figure 3. Pseudocode of MA for parameter estimation of Ni/n-GaAs/In SBD.
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For train and test stages, current-annealing temperature
overlap charts of experimental data versus outputs of competitor
algorithms are shown in Figure 4–9. Especially here, ANFIS,
SLR, FTR, FGSVM, EBOT, and M3/2GPR were determined
and their graphs were drawn because the approaches that gave
the best results in their subgroups were preferred. As shown in
Figure 4 and 7, in both training and testing stages, the outputs of
the FGSVM and ANFIS coincided with the experimental cur-
rents in all annealing temperature. Low RMSE, MSE, and
MAE values of models affected positively the agreement between

experimental data and outputs for each annealing temperature.
Low error values and high R value increased model performance.
However, in terms of overlap, FTR and EBOT performed mod-
erately as shown in Figure 6 and 8, while SLR and M3/2GPR
performed poorly as shown in Figure 5 and 9.

Current-sample curves of experimental current versus output
currents of competitor algorithms are shown in Figure 10–15 for
train and test phases. Error differences between experimental
and output current data in these figures supported aforemen-
tioned performance comparisons for ANFIS, SLR, FTR,

Table 1. Performance comparison of regression methods for SBD.

Model Training Test

RMSE [A] MSE [A] MAE [A] R RMSE [A] MSE [A] MAE [A] R

ANFIS 6.0341e-07 3.6410e-13 2.3873e-07 0.9999 5.8904e-07 3.4697e-13 2.3083e-07 0.9999

Linear regression BLR 1.9170e-04 3.6750e-08 8.8520e-05 0.4072 1.8609e-04 3.4631e-08 8.7541e-05 0.4081

ILR 1.8956e-04 3.5932e-08 8.6338e-05 0.4263 1.8439e-04 3.4000e-08 8.5468e-05 0.4294

RLR 2.0989e-04 4.4054e-08 4.3604e-05 0.0011 2.0384e-04 4.1552e-08 4.2638e-05 0.0011

SLR 1.8956e-04 3.5932e-08 8.6338e-05 0.4263 1.8439e-04 3.4000e-08 8.5468e-05 0.4294

Trees regression FTR 2.2429e-05 5.0304e-10 5.1910e-06 0.9943 2.9596e-05 8.7591e-10 6.5527e-06 0.9894

MTR 5.8365e-05 3.4065e-09 1.0951e-05 0.9606 5.4362e-05 2.9552e-09 1.2757e-05 0.9638

CTR 1.1898e-04 1.4157e-08 2.4821e-05 0.8238 1.2345e-04 1.5241e-08 2.8452e-05 0.7957

Support vector machines LSVM 2.0596e-04 4.2418e-08 1.0901e-04 0.1841 2.0036e-04 4.0144e-08 1.0773e-04 0.1928

FGSVM 9.7843e-07 9.5732e-13 8.1908e-07 0.9999 9.7343e-07 9.4756e-13 8.1845e-07 0.9999

MGSVM 3.5578e-05 1.2658e-09 1.3987e-05 0.9855 3.4373e-05 1.1815e-09 1.4028e-05 0.9857

CGSVM 1.6794e-04 2.8202e-08 3.7724e-05 0.5999 1.6267e-04 2.6461e-08 3.6971e-05 0.6027

Ensemble trees EBOT 2.5319e-05 6.4104e-10 3.9802e-06 0.9927 2.1918e-05 4.8041e-10 5.3415e-06 0.9942

EBAT 5.3900e-05 2.9052e-09 1.3602e-05 0.9701 4.7521e-05 2.2582e-09 1.2749e-05 0.9725

Gaussian process regression SEGPR 2.0531e-04 4.2153e-08 7.8023e-05 0.2078 1.9934e-04 3.9735e-08 7.7029e-05 0.2091

M5/2GPR 2.0531e-04 4.2152e-08 7.8023e-05 0.2078 1.9934e-04 3.9735e-08 7.7029e-05 0.2091

EGPR 2.0531e-04 4.2153e-08 7.8023e-05 0.2078 1.9934e-04 3.9735e-08 7.7029e-05 0.2091

RQGPR 2.0531e-04 4.2153e-08 7.8023e-05 0.2078 1.9934e-04 3.9735e-08 7.7029e-05 0.2091

M3/2GPR 1.9433e-04 3.7764e-08 7.0092e-05 0.3779 1.8838e-04 3.5488e-08 6.9204e-05 0.3820

Figure 4. Current-annealing temperature overlap chart of experimental data versus ANFIS output for train and test phases.
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Figure 5. Current-annealing temperature overlap chart of experimental data versus SLR output for train and test phases.

Figure 6. Current-annealing temperature overlap chart of experimental data versus FTR output for train and test phases.

Figure 7. Current-annealing temperature overlap chart of experimental data versus FGSVM output for train and test phases.
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Figure 8. Current-annealing temperature overlap chart of experimental data versus EBOT output for train and test phases.

Figure 9. Current-annealing temperature overlap chart of experimental data versus M3/2GPR output for train and test phases.

Figure 10. Current-sample curves of experimental current versus ANFIS output current for train and test phases.

www.advancedsciencenews.com www.pss-a.com

Phys. Status Solidi A 2023, 220, 2200740 2200740 (9 of 15) © 2023 Wiley-VCH GmbH

 18626319, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pssa.202200740 by C

um
huriyet U

niversity, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.pss-a.com


Figure 11. Current-sample curves of experimental current versus SLR output current for train and test phases.

Figure 12. Current-sample curves of experimental current versus FTR output current for train and test phases.

Figure 13. Current-sample curves of experimental current versus FGSVM output current for train and test phases.
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FGSVM, EBOT, and M3/2GPR methods. In Figure 10 and 13,
the outputs of ANFIS and FGSVM overlapped completely with
the experimental current because of the low RMSE and high
R values. As shown in Figure 11, 12, 14, and 15, the overlap
performances of the other methods were lower than those of
the ANFIS and FGSVM because their RMSE error values were
about e-05 levels. As a result, low RMSE and high R values
reduced the difference between the experimental current and
outputs of competitor algorithms.

For train and test phases, Figure 16–20 showed the I–V curves
of competitor algorithms for annealing temperatures of 200, 300,
400, 500, and 600 °C. As can be seen from these figures and can
be understood from the error function values in Table 1, the
output performances of ANFIS and FGSVM are quite good
compared with those of other proposed models for the varying
annealing temperature. As a result, this situation showed the
robustness of the ANFIS and FGSVM methods. On the other
hand, SLR, FTR, EBOT, and M3/2GPRmethods could not follow
the experimental I–V data curve for all annealing temperatures.

3.2. Parameter Estimation of SBD

In the previous section, 19 different regression methods were
compared and it was seen that the best performance was exhib-
ited by the ANFIS method. In this section, n, ϕb, and Rs values,
which were electrical characteristic parameters, were estimated
by MA using I–V data of Ni/nGaAs SBDs for annealing temper-
atures of 200, 300, 400, 500, and 600 °C. In addition, unlike
similar studies in the literature, I–V data for the annealing tem-
perature of 350 °C were produced and parameter estimation was
performed from this characteristic and added to the comparison
table. n, ϕb, and Rs characterize the behavior of Ni/n-GaAs SBD.
Therefore, it is important to estimate these parameters from the
I–V data all at once. The characteristic parameters estimated
from the I–V data for each annealing temperature using the
MA are shown in Table 2. Herein, the RMSE error value for each
estimation operation was quite small. This shows that the MA
makes a precise estimation. Likewise, the excellent fit between
the experimental and estimation data in Figure 21 supported this

Figure 14. Current-sample curves of experimental current versus EBOT output current for train and test phases.

Figure 15. Current-sample curves of experimental current versus M3/2GPR output current for train and test phases.
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Figure 16. I–V curves of ANFIS, SLR, FTR, FGSVM, EBOT, and M3/2GPR for 200 °C annealing temperature.

Figure 17. I–V curves of ANFIS, SLR, FTR, FGSVM, EBOT, and M3/2GPR for 300 °C annealing temperature.

Figure 18. I–V curves of ANFIS, SLR, FTR, FGSVM, EBOT, and M3/2GPR for 400 °C annealing temperature.
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suggestion. Especially, the overlaps in the series resistance
regions were remarkable. Also, as shown in Table 2, thermal
annealing process changed the electrical characteristic parame-
ters of the SBD. Thus, the effect of thermal annealing has been
proven in the production of SBD with the desired quality
interface and performance. For MA simulation, population size
male and female mayflies, iteration, inertia weight, and nuptial
dance were experimentally selected 20, 500, 0.8, and 5,
respectively.[41] Personal and global learning coefficients were
determined 1 and 1.5. The MA algorithm was run 50 times

with the selected algorithm parameters and the best values were
tabulated.

4. Conclusion

In this article, a three-stage study was carried out for the
Ni/n-GaAs SBD. In the first stage, SBDs were produced.
Then, they were annealed from annealing temperatures of
200, 300, 400, 500, and 600 °C. For each annealing temperature,

Figure 19. I–V curves of ANFIS, SLR, FTR, FGSVM, EBOT, and M3/2GPR for 500 °C annealing temperature.

Figure 20. I–V curves of ANFIS, SLR, FTR, FGSVM, EBOT, and M3/2GPR for 600 °C annealing temperature.

Table 2. Estimated characteristic parameter of SBD using MA..

Annealing temperature [°C]

200 300 350 400 500 600

n 1.0519 1.0705 1.2222 1.1335 1.0931 1.1314

ϕb [eV] 0.8963 0.8541 0.8026 0.8022 0.8236 0.8029

Rs [Ω] 50.4329 81.8431 49.2221 16.7509 14.1174 47.0793

RMSE [A] 7.0499e-08 1.3861e-07 1.0406e-06 8.9686e-07 8.4819e-07 2.4192e-07
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voltage source was applied to the contacts from�1 toþ0.5 V with
0.005 V steps. The I–V data of SBDs were recorded. In total, 1503
I–V data were obtained. In the second stage, when 1203 data
were selected for training, 300 data were determined for testing.
While the I–V data were divided into train and test data, one out
of every five data was reserved as a test data. Thus, a qualified
sampling was made, which increased the all model performance.
Then, using this training and test data, I–V characteristic models
of SBDs were created with the aid of 19 different regression
methods. All models were evaluated using RMSE, MSE, MAE,

and R formulas. The lowest error values were achieved for the
ANFIS and the FGSVM model. Thus, I–V characteristic model
of ANFIS was created that can accurately generate the diode cur-
rent corresponding to the desired temperature or voltage. In
addition, I–V data for the annealing temperature of 350 °C were
produced using this model. In the third stage, the estimation of
electrical characteristic parameter was made using the I–V data
for annealing temperatures of 200, 300, 350, 400, 500, and
600 °C. n, ϕb, and Rs values were found with high precision using
the MA. As a result, an estimation approach was alternatively

Figure 21. Experimental versus estimated I–V data for 200, 300, 350, 400, 500, and 600 °C.
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applied by the MA. Thus, for researchers and practitioners, the
experimental, modeling, and estimation stages were applied to
realize a result-oriented key solution study in in the light of
all scientific results.
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