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Abstract

We report the complete mitochondrial genome of the Cretan bush cricket Poecilimon cretensis. The mitogenome consists 
of 13 protein-coding regions, 22 tRNAs, two rRNAs, and one control region. The length of mitogenome in P. cretensis 
varies between15477 and 15631 bp, mainly due to variability in control region. The start and stop codons of protein coding 
genes exhibit the general pattern in Phaneropterinae. Phylogenetic tree constructed with the mitogenome obtained during 
this study and 12 mitogenomes of Phaneropterinae downloaded from GenBank, placed P. cretensis in Barbitistini as sister 
group to Poecilimon luschani. Data indicate that the gene overlapping pattern exhibit strong phylogenetic signals.
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Introduction

Genus Poecilimon Fischer holds a number of the records. It is the largest genus of Barbitistini including nearly half 
of the species and the largest genus of Phaneropterinae in Palaearctic (Cigliano et al. 2022; Borissov et al. 2023). 
With more than 150 species/subspecies, Poecilimon is an Anatolio-Greek-Balkan genus in distribution, though a few 
species also occur in the peripheral area (Çıplak 2004). Additionally, some species of the genus may become pests in 
certain conditions or years (Çıplak 2021). Though it is a large genus and includes economically important species, 
genetic data relating to the genus are very scarce, therefore prevents making robust statements about evolution of 
the genus, and the higher taxa it belongs. So far, mitogenome of a single species, Poecilimon luschani, is produced 
and uploaded to databases (Öztürk & Çıplak 2019). The present study aims; (i) to describe the mitogenome of 
Poecilimon cretensis Werner, the only species of the genus occurring in Crete, an island considered as a part of 
the possible origin place of the genus (Çıplak 2004), (ii) to compare with available mitogenomes of other related 
species belonging to the genus Poecilimon, tribe Barbististini and subfamily Phaneropterinae, and (iii) to determine 
the phylogenetic position of the species. 

Materials and methods 

The samples of P. cretensis were collected from Crete Island of Greece (GREECE: Kreta, Chania, Chora Sfakion 
(35°12′4′′N, 24°8′34′′E), 100 m, 25.05.2016, coll. Martina Heller; Collection of Heller- CH8219, CH8220, 
CH8221, CH8224 and CH8225). Total DNA was extracted from alcohol preserved muscle tissue of the hind 
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legs of five specimens using DNeasy Blood & Tissue Kit (Qiagen Inc.). Total genomic DNA extracts of five P. 
cretensis specimens were multiplexed and sequenced using the Illumina HiSeq 2500 next generation sequencing 
(NGS) platform for the 150 bp paired-end reads via Novogene Inc.(China). The raw NGS reads of five specimens 
provided by the company were first de-multiplexed and then each filtered by removing reads with adaptor/barcode 
contamination and low quality (N10 bp; low quality scores b30; poly-Ns N5 bp) (Zhou et al. 2013; Tang et al. 2014). 
The sequence quality was checked using FASTQC (Andrews 2010). The processed and unmapped forward and 
reverse reads were imported to the TRUBA clusters (The Scientific and Technological Research Council of Turkey, 
TUBITAK) and assembled using the short-read assembler MINIA with default settings (Salikhov et al. 2014). 
The contigs obtained were blasted against the custom database covering Orthoptera mitogenome data generated 
from GenBank. The mitogenomes were annotated using metazoa (RefSeq 63) reference on MITOS2 (Donath et al. 
2019). The secondary structures of tRNAs were checked using ARWEN v.1.2 (Laslett et al. 2008). The annotated 
mitogenomes were imported to GENEIOUS v. 9.0.5 (Biomatters Ltd., Auckland, New Zealand), and aligned with 
annotated P. luschani reference genome (see Öztürk & Çıplak 2019) for final manual control. 

For phylogenetic analysis, we acquired 13 mitogenomes belonging to subfamily Phaneropterinae; one from P. 
cretensis produced during this study plus 10 belong to other genera of the subfamily as ingroup and one from each of 
Mecopodinae and Pseudophyllinae subfamilies as outgroup (Table 1). We generated multiple sequence alignments 
separately for each of the 13 protein coding genes (PCG), 22 tRNAs and 2 rRNAs separately for a total of 13 
sequences using MAFFT v.7 (Katoh & Standley 2013). Then we removed the stop codons of each PCG matrices in 
MEGA v.X (Kumar et al. 2018). Individual gene alignments were concatenated using SEQUENCEMATRIX v.1.7.8 
(Vaidya et al. 2011) into the final 15,026 bp in length. We then reconstructed a maximum likelihood tree using IQ-
TREE2 (Minh et al. 2020) with ModelFinder (Kalyaanamoorthy et al. 2017) function, and trees were visualized 
using FIGTREE v.1.4.2.

TAble 1. GenBank accession numbers of the sequences used in the phylogenetic analysis
Species Acc.No. Reference
Ruidocollaris obscura NC_028160 Yang et al. 2016
Holochlora fruhstorferi NC_033993 Zhou et al. 2017
Sinochlora longifissa NC_021424 Liu et al. 2013
Isophya major MK759880 Öztürk & Çıplak 2019
Poecilimon cretensis WILL BE ADDED THIS STUDY
Poecilimon luschani MK757458 Öztürk & Çıplak 2019
Phaneroptera gracilis NC_034756 Wang et al. 2017
Deflorita sp. KX057719.1 Zhou et al., 2017
elimaea cheni NC_014289 Zhou et al. 2010
Ducetia japonica NC_031652 Zhou et al. 2017
Kuwayamaea brachyptera NC_028159 Yang et al. 2016
Mecapoda niponensis NC_021379 Zhou et al. 2013
Phyllomimus detersus NC_028158 Yang et al. 2016

Results and Discussion

Length of the complete mitogenomes in five specimens of P. cretensis, assembled against P. luschani (MK757458) 
varies between15477 and 15631 bp. This difference mainly arises from the length of AT rich control region which 
varies between 676 and 830 bp. The matrix established by these five mitogenomes has 414 variable base positions. 
The mitogenome of P. cretensis consists of 13 protein coding genes, 22 tRNAs, two rRNAs, and one AT rich control 
region (Table 2) and the gene order is identical to published pancrustacean mitogenome (Cameron 2014; Öztürk 
& Çıplak 2019). The mitogenome with 15542 bp-length was used in descriptive analyses (Figure 1). The rate of 
AT/GC is 67.7/33.3 similar to other Orthoptera (Fenn et al. 2008; Öztürk & Çıplak 2019). Of the 13 protein coding 
genes cox1, atp8, nad3, nad5 and nad6 have ATT start codon; nad2, cox2, atp6, cox3, nad4, nad4l and cytb have 
ATG, and nad1 has TTG. All start codons, other than that of nad3, are the same as P. lushani, and fit to the ATN 
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pattern of Phaneropterinae and other orthopteran as well (Fenn et al. 2008; Öztürk & Çıplak 2019). Stop codons 
are TAA in nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad4l and nad1, TAG in cytb, incomplete TA- in nad6 and 
incomplete T-- in nad4 and nad5. Stop codons of PCG other than nad6, cytb and nad1 are the same as P. luschani 
and the common pattern of TAN or T-- pattern observed in all Phaneropterinae (Öztürk & Çıplak 2019). The tRNA 
genes constitute 1449 bp of the mitogenome in P. cretensis and the lengths of them vary between 62 and 71 bp 
(Table 2). All of them except for trnS1 (without D-stem) formed clover-leaf structure as observed in other insects 
(Kim et al. 2005). The rRNA genes constitute 2086 bp of the mitogenome.

FIguRe 1. The map of mitochondrial genome and habitus of Poecilimon cretensis

The topology of the calculated phylogenetic tree largely recovers that presented by Öztürk & Çıplak (2019), 
but the nodal supports here are lower. As expected P. cretensis occurs as sister group to P. luschani and then these 
two to Isophya major (Figure 2). The overlapping and non-coding intergenic sequences pattern of P. cretensis and P. 
luschani are very similar especially for the PCG with adjacent genes (Table 3). Differences between two species for 
the overlapping regions are: (i) cytb-trnS2 overlaps by two bp in P. cretensis but one bp in P.luschani, and (ii) trnW-
trnC overlaps for eight bp in P. cretensis but nine bp in P. luschani. The overlapping pattern of the adjacent genes is 
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also largely similar with the other member of the tribe Barbitistini, Isophya major and with other Phaneropterinae, 
with Orthoptera as well, for certain positions (Fenn et al. 2008; Öztürk & Çıplak 2019). This case indicates to strong 
phylogenetic signals for the overlapping regions and to some degree non-coding intergenic sequences. 

TAble 2. The mitogenome profile for Poecilimon cretensis (genes are listed according to their order in genome; S, 
strand; intergenic spacers (IGS) are indicated by “+” and the overlapping regions (OR) by “-“) 

gene S Position Size (bp) IgS/OR IgS/OR sequence 
trnI J 1-64 64 +7 CTACGTA
trnQ N 72-139 68 +8 TATATTCC
trnM J 148-213 66 +6 CTGTTA
nad2 J 220-1236 1,017 -2 AA
trnW J 1235-1302 68 +5 CCTTA
trnC N 1298-1359 62 +3 TAC
trnY N 1363-1428 66 -8 ATTCTACC
cox1 J 1391-2962 1542 -1 A
trnl2 J 2962-3026 65 +4 GTAA
cox2 J 3031-3741 711 -20 CATCAGATGGCTGAAAGTAA
trnK J 3722-3791 70 -1 A
trnD J 3791-3856 66 0
atp8 J 3857-4024 168 -7 ATGATAA
atp6 J 4018-4695 678 -1 A
cox3 J 4695-5486 792 +11 CATTATTCCTT
trnG J 5498-5562 65 -3 ATA
nad3 J 556-5916 357 +5 CTTTT
trnA J 5922-5986 65 0
trnR J 5987-605 64 +19 GTGTAACAATTATAGTAAT
trnn J 607-6134 65 -2 GA
trnS1 J 6133-6199 67 +1 A
trne J 6201-6267 67 +2 TA
trnF N 6266-6329 64 0
nad5 N 633-8061 1732 0
trnH N 8062-8125 64 0
nad4 N 8126-9464 1339 -7 TTAACAT
nad4l N 9458-9754 297 +4 TCCT
trnT J 9759-9821 63 +1 T
trnP N 9821-9885 65 +1 T
nad6 J 9887-10405 519 -1 A
cytb J 10405-11541 1137 -2 AG
trnS2 J 1154-11608 69 +22 CTATGTTACTAAATTCATTACA
nad1 N 11631-12587 957 -6 TACTAT
trnl1 N 12582-12646 65 0
rrnl N 12647-1395 1304 0
trnV N 13951-14021 71 0
rrnS N 14022-14803 782 0
A + T 14804-15542 739 0
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TAble 3. The number of intergenic (+) or overlapping (-) bases in three species of Barbitistini (CRE, Poecilimon 
cretensis; LUS, P. luschani; MAJ, Isophya major. The gene order in first panel of the table is followed by first line of the 
second panel. The yellow cells indicate the pattern shared by all species of the tribe, and the blue cells the pattern shared 
two species of Poecilimon). 

Gene CRE LUS MAJ gene CRe luS MAJ
trnI +7 +14 +4 trnn -4 −4 −3
trnQ +8 +9 +7 trnS1 0 0 −1
trnM +5 +5 +5 trne -4 −4 −4
nad2 -3 −3 −3 trnF -1 −1 −1
trnW -8 -9 −10 nad5 0 0 0
trnC +3 +3 +1 trnH -2 −2 −2
trnY -8 −8 −8 nad4 -7 −7 −7
cox1 +1 +1 +2 nad4l +4 +4 +4
trnl2 +1 0 +1 trnT -2 −2 −2
cox2 -20 −20 −20 trnP +1 +1 +1
trnK -3 −3 −1 nad6 -1 -1 -1
trnD -2 −2 0 cytb -2 −1 −2
atp8 -7 −7 −7 trnS2 +21 +21 +24
atp6 +2 +3 −1 nad1 0 0 0
cox3 +11 +2 0 trnl1 0 0 0
trnG -4 −4 −4 rrnl 0 0 0
nad3 +5 +4 +13 trnV 0 0 0
trnA -1 −1 +8 rrnS 0 0 0
trnR +17 +17 +159 A + T 0 0 0

FIguRe 2. Phylogenetic tree inferred by maximum likelihood using W-IQ-Tree from 13 Phaneropterinae mitogenomes 
representing different tribes (number along the nodes indicate bootstrap support).
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