Show simple item record

dc.contributor.authorBillur A.
dc.contributor.authorKöksal M.
dc.contributor.authorGutierrez-Rodriguez A.
dc.contributor.authorHernandez-Ruiz M.
dc.date.accessioned2022-05-13T10:58:31Z
dc.date.available2022-05-13T10:58:31Z
dc.date.issued18 June 2021tr
dc.identifier.citation1. J. de Blas, et al., The CLIC Potential for New Physics, CERN Yellow Reports: Monographs. arXiv:1812.02093 [hep-ph] 2. P. Roloff, R. Franceschini, U. Schnoor, A. Wulzer, The Compact Linear e+ e− Collider (CLIC): Physics Potential, Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations. arXiv:1812.07986 [hep-ex] 3. CLIC and CLICdp Collaborations, The Compact Linear e+e− Collider (CLIC)-2018 Summary Report, CERN Yellow Rep.Monogr., 1802, 1–98 (2018) 4. A. Robson, P. N. Burrows, N. Catalan Lasheras, L. Linssen, M. Petric, D. Schulte, E. Sicking, S. Stapnes, W. Wuensch, [CLIC and CLICdp Collaborations], The Compact Linear e+ e− Collider (CLIC): Accel- erator and Detector, Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations. arXiv:1812.07987 [physics.acc-ph] 5. S.L. Glashow, Nucl. Phys. 22, 579 (1961) 6. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967) 7. A. Salam, in N. Svartholm (ed.) Elementary Particle Theory, p. 367. (Stockholm, Almquist and Wiksell, 1968) 123 Eur. Phys. J. Plus (2021) 136:697 Page 31 of 32 697 8. U. Baur, D. Zeppenfeld, Phys. Lett. B 201, 383 (1988) 9. K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987) 10. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Lett. B 283, 353 (1992) 11. Satendra Kumar, Poulose Poulose, Int. J. Mod. Phys. A 30, 1550215 (2015) 12. J.I. Aranda, F. Ramírez-Zavaleta, D.A. Rosete, F.J. Tlachino, J.J. Toscano, E.S. Tututi, J. Phys. G 41, 055003 (2014) 13. M. Diehl, O. Nachtmann, Z. Phys. C 62, 397 (1994) 14. I. Sahin, A.A. Billur, Phys. Rev. D 83, 035011 (2011) 15. I.T. Cakir, O. Cakir, A. Senol, A.T. Tasci, Acta Physica Polonica B 45, 1947 (2014) 16. S.M. Etesami, et al., Eur. Phys. J. C 76, 533 (2016) 17. M. Aaboud et al., [ATLAS Collaboration]. Eur. Phys. J. C 77, 563 (2017) 18. A.M. Sirunyan et al., [CMS Collaboration]. Phys. Lett. B 772, 21 (2017). arXiv:1703.06095 [hep-ex] 19. T. Aaltonen et al., [CDF Collaboration]. Phys. Rev. Lett. 102, 242001 (2009) 20. V.M. Abazov et al., [D0 Collaboration]. Phys. Lett. B 718, 451 (2012). arXiv:1208.5458 [hep-ex] 21. S. Schael et al., [ALEPH, DELPHI, L3, OPAL Collaborations and LEP Electroweak Collaborations]. Phys. Rept. 532, 119 (2013). arXiv:1302.3415 [hep-ex] 22. Ligong Bian, Jing Shu, Yongchao Zhang, JHEP 1509, 206 (2015) 23. Ruibo Li, Xiao-Min Shen, Kai Wang, Xu Tao, Liangliang Zhang, Guohuai Zhu, Phys. Rev. D 97, 075043 (2018) 24. M. Köksal, A. A. Billur, A. Gutiérrez-Rodríguez, M. A. Hernández-Ruíz, arXiv:1910.06747v1 [hep-ph] 25. H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List, H.E. Logan et al., arXiv:1306.6352 [hep-ph] 26. V. Ari, A.A. Billur, S.C. Inan, M. Köksal, Nucl. Phys. B 906, 211 (2016) 27. S. Atag, I.T. Cakir, Phys. Rev. D 63, 033004 (2001) 28. S. Atag, I. Sahin, Phys. Rev. D 64, 095002 (2001) 29. B. Sahin, Phys. Scripta 79, 065101 (2009) 30. J. Papavassiliou, K. Philippides, Phys. Rev. D 60, 113007 (1999) 31. D. Choudhury, J. Kalinowski, A. Kulesza, Phys. Lett. B 457, 193 (1999) 32. E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81, 074003 (2010) 33. A. Gutiérrez-Rodríguez, M. Koksal, A.A. Billur, M.A. Hernández-Ruíz, J. Phys. G 47, 055005 (2020) 34. M. Koksal, A.A. Billur, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, arXiv:1910.06747 [hep-ph] 35. P. Agostini, et al., [LHeC Collaboration and FCC-he Study Group], arXiv:2007.14491 [hep-ex] 36. D. d’Enterria, et al., PHOTON-2017 Conference Proceedings. arXiv:1812.08166 37. I.F. Ginzburg, G.L. Kotkin, arXiv:1910.13961v2 [hep-ph] 38. I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, V.I. Telnov, Nucl. Instr. Methods 205, 47 (1983) 39. I. Ginzburg, G. Kotkin, V. Serbo, V. Telnov, Pizma ZhETF 34, 514 (1981) 40. I. Ginzburg, G. Kotkin, V. Serbo, V. Telnov, JETP Lett. 34, 491 (1982) 41. I. Ginzburg, G. Kotkin, S. Panfil, V. Serbo, V. Telnov, Nucl. Instr. Meth. A 219, 5 (1984) 42. V.I. Telnov, Nucl. Instrum. Meth. A 294, 72 (1990) 43. Conceptual Design of a 500-GeV e+ e− Linear Collider with Integrated X-Ray Laser Facility, Vol. 1-2. R. Brinkmann (ed.), G. Materlik (ed.), J. Rossbach (ed.), A. Wagner (ed.) (DESY) May 1997, 1183 pages; DESY-97-048, DESY-1997-048, ECFA-1997-182, ECFA-97-182 44. R. Brinkmann et al., Nucl. Instr. Meth. A 406, 13 (1998) 45. I. Watanabe, et al., JLC Design Study, KEK-REP-97-1, April 1997; KEK Report 97-17 46. V. Telnov, Nucl. Instr. Meth. A 355, 3 (1995) 47. V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975) 48. G. Baur et al., Phys. Rep. 364, 359 (2002) 49. K. Piotrzkowski, Phys. Rev. D 63, 071502 (2001) 50. O.J.P. Eboli, M.B. Magro, P.G. Mercadante, S.F. Novaes, Phys. Rev. D 52, 15 (1995) 51. W. Buchmuller, D. Wyler, Nucl. Phys. B 268, 621 (1986) 52. B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, JHEP 1010, 085 (2010). arXiv:1008.4884 53. C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane et al., Annals Phys. 335, 21 (2013). arXiv:1205.4231 54. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993) 55. K.J.F. Gaemers, G.J. Gournaris, Z. Phys. C 1, 259 (1979) 56. A. De Rujula, M.B. Gavela, P. Hernandez, E. Masso, Nucl. Phys. B 384, 3 (1992) 57. A. Abulencia et al., [CDF Collaboration]. Phys. Rev. Lett. 98, 112001 (2007) 58. T. Aaltonen et al., [CDF Collaboration]. Phys. Rev. Lett. 102, 222002 (2009) 59. S. Chatrchyan et al., [CMS Collaboration]. JHEP 1201, 052 (2012) 60. S. Chatrchyan et al., [CMS Collaboration]. JHEP 1211, 080 (2012) 123 697 Page 32 of 32 Eur. Phys. J. Plus (2021) 136:697 61. V.M. Abazov et al., [D0 Collaboration]. Phys. Rev. D 88, 012005 (2013) 62. S. Chatrchyan et al., [CMS Collaboration]. JHEP 07, 116 (2013) 63. O.J.P. Eboli et al., Phys. Rev. D 47, 1889 (1993) 64. Kingman Cheung, Phys. Rev. D 47, 3750 (1993) 65. G. Moortgat-Pick, et al., SLAC-PUB-1087, CERN-PH-TH-2005-036, DESY-05-059, FERMILAB-PUB- 05-060-T, IPPP-04-50, KEK-2005-16, PRL-TH-05-06, SHEP-05-03, hep-ph/0507011 66. I.F. Ginzburg, arXiv:1508.06581 [hep-ph] 67. A. Belyaev, N.D. Christensen, A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013) 68. C.M.S. Collaboration, Phys. Lett. B 695, 424 (2011) 69. C.M.S. Collaboration, Eur. Phys. J. C 71, 1721 (2011) 70. ATLAS Collaboration, Eur. Phys. J. C 71, 1577 (2011) 71. ATLAS Collaboration, Eur. Phys. J. C 79, 884 (2019). arXiv:1905.04242 [hepex] 72. C.M.S. Collaboration, JHEP 1904, 122 (2019). arXiv:1901.03428 [hepex] 73. Rafiqul Rahaman and Ritesh K. Singh, arXiv:1909.05496 [hep-ph] 74. Anja Butter et al., JHEP 07, 152 (2016) 75. G. Aad et al., JHEP 09, 029 (2016) 76. C.M.S. Collaboration, Eur. Phys. J. C 73, 2283 (2013) 77. ATLAS Collaboration. Phys. Rev. D 87, 112001 (2013) 78. C.M.S. Collaboration. arXiv:1310.0473 [hep-ex] 79. P. Calfayan, PoS EPS-HEP2019, 663 (2020) 663 80. C.M.S. Collaboration, Eur. Phys. J. C 73, 2610 (2013) 81. ATLAS Collaboration, JHEP 09, 029 (2016) 82. R. Rahaman, arXiv:2007.07649 83. R. Rahaman, R.K. Singh, Phy. Rev. D 101, 075044 (2020) 84. S.Y. Choi, K. Hagiwara, M.S. Baek, Phys. Rev. D 54, 6703 (1996)tr
dc.identifier.urihttps://hdl.handle.net/20.500.12418/13038
dc.description.abstractIn this study, we investigate the potential of the γ γ → W + W − , e + γ → e+ γ ∗ γ → e + W − W + and e+ e− → e+ γ ∗ γ ∗ e− → e + W − W + e − processes at the Com- pact Linear Collider (CLIC) operating in γ γ , γ ∗ γ and γ ∗ γ ∗ modes to probe the anomalous triple gauge bosons W + W − γ couplings. To identify the W + W − production in the final state, we consider the leptonic, semi-leptonic √ and hadronic decays channels. √ Based on future CLIC data, we assume L = 1 ab−1 @ s = 0.380 TeV, L = 2.5 ab−1@ s = 1.5 TeV, √L = 5 ab−1 @ s = 3 TeV and δsys = 0%, 5%, 10%, 15% for our study. Using these data, the strongest limits expected with the γ γ → W + W − , e + γ → e+ γ ∗γ → e+ W − W + and e+e− → e+ γ ∗ γ ∗ e− → e + W − W + e − processes on the anomalous κγ and λγ cou- plings with δsys = 0% at 95% C.L. are: κγ = ±0.00007, λγ = [−0.00004, 0.00102], κγ = ±0.00015, λγ = [−0.00013, 0.00340] and κγ = [−0.00048, 0.00049], λγ = [−0.00048, 0.00782]. The bounds for κγ and λγ with δsys = 5%, 10%, 15% are weaker with respect to the bounds obtained with δsys = 0%. These limits show potential sensitivity when compared with those from LHC and HL-LHC data and can be a very promising option to probe the anomalous W + W − γ couplings at the CLIC. In addition, a prominent advantage of these processes is that they isolate anomalous W + W − γ couplings, thus allowing the study of W + W − γ couplings independently from W + W − Z .tr
dc.language.isoengtr
dc.relation.isversionofhttps://doi.org/10.1140/epjp/s13360-021-01684-6tr
dc.rightsinfo:eu-repo/semantics/closedAccesstr
dc.subjectAnomalous triple couplings, CLICtr
dc.titleModel-independent limits for anomalous triple gauge bosons W + W − γ couplings at the CLICtr
dc.typearticletr
dc.relation.journalEur. Phys. J. Plustr
dc.contributor.departmentFen Fakültesitr
dc.identifier.volume136tr
dc.identifier.endpage729tr
dc.identifier.startpage697tr
dc.relation.publicationcategoryUluslararası Hakemli Dergide Makale - Kurum Öğretim Elemanıtr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record