Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alsharif, Khalaf F." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    In silico ADMET and DFT analysis of methoxy substituted curcumin derivatives
    (Elsevier, 2024) Afrdi, Muhammad Bilal; Sardar, Haseeba; Serdaroglu, Goncaguel; Shah, Syed Wadood Ali; Alsharif, Khalaf F.; Khan, Haroon
    The current study aimed to predict drug ability of methoxy group substituted curcumin derivatives (MC1 to MC4) using ADMETLab 3.0 and DFT approaches. Almost all derivatives exhibited satisfactory physicochemical properties and medicinal chemistry. Pharmacokinetic profile revealed that all derivatives showed higher Caco-2 cell predicted permeability and exhibited a P-glycoprotein (Pgp) inhibitor capability, while non-of them is a Pgpsubstrate. MC1 and MC2 exhibited favorable human intestinal absorption (HIA) values. MC1 was in favor of better oral bioavailability. Values for plasma protein binding and volume of distribution were optimum for MC1 and MC2. All compounds were unable to cross blood brain barrier. Fraction unbound in the plasma was moderate for all compounds. All derivatives exhibited moderate clearance rate, while having ultra short half-lives. Toxicity profile was moderate for almost all compounds. Similarly, the DFT computations of the compounds of the curcumin derivatives were conducted at B3LYP/6-311G** level to predict and then assess the key electronic characteristics underlying the bioactivity. Accordingly, the MC4 molecule (Delta Egap = 3.883 eV) would prefer to interact with the external molecular system more than the other molecules due to having the biggest energy gap. The Delta Nmax (2.328 eV) and Delta epsilon back-donat. (-0.422 eV) scores implied that MC1 would have more charge transfer capability and the lowest stability via back donation among the compounds. In short, the derivative (MC1 to MC4) exhibited strong extrinsic therapeutic properties and therefore stand eligible for further in vitro and in vivo studies.
  • Küçük Resim Yok
    Öğe
    SwissADME studies and Density Functional Theory (DFT) approaches of methyl substituted curcumin derivatives
    (Elsevier Sci Ltd, 2024) Afridi, Muhammad Bilal; Sardar, Haseeba; Serdaroglu, Goncagul; Shah, Syed Wadood Ali; Alsharif, Khalaf F.; Khan, Haroon
    Research suggests curcumin's safety and efficacy, prompting interest in its use for treating and preventing various human diseases. The current study aimed to predict drag ability of methyl substituted curcumin derivatives (BL1 to BL4) using SwissADME and Density Functional Theory (DFT) approaches. The curcumin derivatives investigated mostly adhere to Lipinski's rule of five, with molecular properties including MW, F. Csp3, nHBA, nHBD, and TPSA falling within acceptable limits. The compounds demonstrating high lipophilicity while poor water solubility. The pharmacokinetic evaluation revealed favorable gastrointestinal absorption and bloodbrain barrier permeation while none were identified as substrates for P-glycoprotein, however, revealed inhibitory actions against various cytochrome P450 enzymes. Additionally, all derivatives exhibited a consistent bioavailability score of 0.55. Similarly, the DFT computations of the compounds of the curcumin derivatives were conducted at B3LYP/6-311 G** level to predict and then assess the key electronic characteristics underlying the bioactivity. Accordingly, the BL4 molecule (Delta Egap= 4.105 eV) would prefer to interact with the external molecular system more than the other molecules due to having the biggest energy gap. The Delta Nmax (2.328 eV) and Delta epsilon back-donat. (-0.446 eV) scores implied that BL1 would have more charge transfer capability and the lowest stability via back donation among the compounds. In short, the derivative (BL1 to BL4) exhibited strong extrinsic therapeutic properties and therefore stand eligible for further in vitro and in vivo studies.

| Sivas Cumhuriyet Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim