Yazar "El Moussaoui, Abdelfattah" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe In vitro and in silico evaluation of the antimicrobial and antioxidant activities of spiropyrazoline oxindole congeners(Elsevier, 2024) Chalkha, Mohammed; Chebbac, Khalid; Nour, Hassan; Nakkabi, Asmae; El Moussaoui, Abdelfattah; Tuzun, Burak; Bourhia, MohammedThe search for novel powerful antimicrobial and antioxidant agents is considered a dynamic field in medicinal chemistry. In this context, a series of spiropyrazoline indolin-3-one congeners were assessed for their in vitro bioactivities, and in-silico studies were conducted to support the experimental results. The antimicrobial screening of the spiropyrazoline oxindole congeners against the selected microbe strains (Staphylococcus aureus (CECT 976), Bacillus subtilis (DSM 6633), Escherichia coli (K12), and Candida albicans (ATCC 10231)) exhibited moderate to excellent, compared to control standard antibiotics (Ampicillin, streptomycin and fluconazole). This activity was observed to be tightly dependent upon the nature of the substituents carried by the aromatic rings. Moreover, the tested compounds showed variable dose -dependent antioxidant activity. Notably, congeners 2c, 2d and 2e exhibited a remarkable antioxidant activity, due to the positive impact of the electron-donating groups (CH3 and OCH3) on the antioxidant activity. Density functional theory (DFT) simulations were executed on the target molecules to better understand their structural and electronic properties, as well as to explain the results obtained from the antioxidant activity. The molecular docking studies showed that the studied congeners have good binding affinities and interactions with the target proteins (catalase compound II and CYP51). Moreover, the 100 ns molecular dynamics (MD) simulation analysis was conducted to follow the behavior of the complexes formed between ligand 2e and the target proteins (2CAG and 5V5Z) under in-silico physiological conditions to explore and evaluate its stability over time. MD simulation indicated a stable conformation and binding patterns in a stimulating environment of the congeners (2CAG-2e and 5V5Z-2e). The results of Petra/Osiris/Molinspiration (POM) analyses suggested that all the spiranic cycloadducts have good oral bioavailability and pharmacokinetics without any evidence of observed toxicity. Taken together, our findings provide valuable experimental and theoretical information that will be helpful for designing novel spiranic molecules with potential pharmacological applications.Öğe Promising Insecticidal Properties of Essential Oils from Artemisia aragonensis Lam. and Artemisia negrei L. (Asteraceae) by Targeting Gamma-Aminobutyric Acid and Ryanodine Receptor Proteins: In Vitro and In Silico Approaches(Mdpi, 2023) Chebbac, Khalid; Ouaritini, Zineb Benziane; Allali, Aimad; Tuzun, Burak; Zouirech, Otmane; Chalkha, Mohammed; El Moussaoui, AbdelfattahArtemisia negrei (A. negrei) and Artemisia aragonensis (A. aragonensis) are in the family Asteraceae, which has been used in traditional medicine. The use of plant-derived insecticides has become a promising strategy to reduce the harmful effects of synthetic insecticides and overcome the bio-resistance of pest insects to insecticides. In this regard, the purpose of the current study was to determine the chemical composition and evaluate insecticidal effects of essential oils (EOs) extracted from A. negrei (EON) and A. aragonensis (EOA). Notably, all chemical constituents present in the EOs were identified through GC-MS analysis, whilst the insecticidal properties against Callosobruchus maculatus Fab. (C. maculatus) were investigated by use of in vitro an in silico approaches. The obtained results showed that both tested EOs present a significant insecticidal effect against C. maculatus, which increased significantly upon the dose used in both contact and inhalation tests. The lethal concentrations (LC50) for the inhalation test were found to be 2.1 and 2.97 mu L/L, while in the contact test they were 2.08 and 2.74 mu L/L of air for EON and EOA, respectively. At 5 mu L/L of air, the spawn reduction rate was 88.53 % and 77.41%, while the emergence reduction rate was 94.86% and 81.22% by EON and EOA, respectively. With increasing doses of up to 20 mu L/L of air, the reduction in individual emergence reached 100% by the two oils tested after 36 h of treatment. In addition, Molecular docking (MD) simulations supported the in vitro findings and indicated that certain identified components in EOA and EON exhibited stronger hydrogen bonding interactions with the target receptors. Interestingly, the prediction of ADMET properties indicates that the molecules investigated have great pharmacokinetic profiles with no side effects. Taken together, our findings suggest that EOA and EON may exert both potential contact and inhalation insecticidal actions and could be used as an alternative tool for the control of this major insect pest of stored products.