Yazar "Elik, Ahmet Utku" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Development of Image Processing Based Line Tracking Systems for Automated Guided Vehicles with ANFIS and Fuzzy Logic(2023) Yüksek, Ahmet Gürkan; Elik, Ahmet UtkuAutomated Guided Vehicles (AGVs) are robotic vehicles with the ability to move using mapping and navigation technologies to perform tasks assigned to them, guided by guides. Using sensor data such as laser scanners, cameras, magnetic stripes or colored stripes, they can sense their environment and move safely according to defined routes. The basic requirement of motion planning is to follow the path and route with minimum error even under different environmental factors. The key factor here is the most successful detection of the guiding structure of a system moving on its route. The proposed system is to equip a mechanical system that can produce very fast outputs and autonomous motion as a result of combining different algorithms with different hardware structures. In the line detection process, the wide perspective image from the camera is designed to be gradually reduced and converted into image information that is more concise but representative of the problem in a narrower perspective. In this way, the desired data can be extracted with faster processing over less information. In this study, the image information is divided into two parts and planned as two different sensors. The fact that the line information was taken from two different regions of the image at a certain distance enabled the detection of not only the presence of the line but also the flow direction. With the fuzzy system, the performance of the system was increased by generating PWM values on two different hardware structures, loading image capture, image processing processes and driving the motors. In order to determine the membership function parameters of the fuzzy system for each input, the ANFIS approach was used on the data set modeling the system. The outputs produced by the ANFIS model were combined into a single fuzzy system with two outputs from the system rules framework and the system was completed. The success of the algorithms was ensured by partitioning the task distribution in the hardware structure. With its structure and success in adapting different technologies together, a system that can be recommended for similar problems has been developed.Öğe Kablosuz haberleşme protokolleri üzerinden makine öğrenme algoritmaları ile iç mekan konum algılama sisteminin iyileştirilmesi(Sivas Cumhuriyet Üniversitesi, 2024) Elik, Ahmet Utku; Yüksek, Ahmet GürkanKapalı alan konumlandırma sistemleri (Indoor Positioning Systems - IPS), varlık takibi, navigasyon ve kapalı ortamlardaki konum tabanlı hizmetler gibi geniş uygulama alanları nedeniyle son yıllarda önemli bir ilgi görmüştür. Bu tez, kablosuz haberleşme protokolleri ile derin öğrenme algoritmalarını kullanarak iç mekan konumlandırma doğruluğunu artırmayı amaçlamaktadır. Geleneksel IPS yöntemleri, çok yollu yayılma ve sinyal zayıflaması gibi çevresel faktörler nedeniyle genellikle doğruluk ve güvenilirlikte sınırlamalar yaşamaktadır. Çalışmada bu zorlukları kapsamında, farklı kablosuz haberleşme protokolleri, sinyal ölçü teknikleri, konumlandırma algoritmaları, makine ve derin öğrenme tabanlı yöntemler incelenmiştir. Sonuç olarak Ultra Geniş Bant (UWB) radyo frekans sinyallerinin ToA tabanlı Asimetrik Çift Taraflı İki Yönlü Mesafelendirme sinyal ölçüm tekniği kullanılarak verici-alıcı çiftleri arasında elde edilen ToA ve RSSI değerlerini parmak izi tabanlı konumlandırma algoritması üzerinden Makine Öğrenme modellerinin başarım analizi yapılmıştır. Deneysel ölçümlerin alınabilmesi için prototip iç mekan konumlandırma kart tasarımı gerçekleştirilmiş, çalışmada elde edilen veriler ve test işlemleri bu kart üzerinden gerçekleştirilmiştir.