Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ergen, Burhan" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Estimating vulnerability metrics with word embedding and multiclass classification methods
    (Springer, 2024) Kekul, Hakan; Ergen, Burhan; Arslan, Halil
    Cyber security has an increasing importance since the day when information technologies are an invariable part of modern human life. One of the fundamental areas of cyber security is the concept of software security. Security vulnerabilities in software are one of the main reasons for the exploitation of information systems. For this reason, it has been systematically reported, analyzed and classified for a long time, with a protocol established between the states and the stakeholders of the issue at the level. All these processes are carried out manually by humans today. This situation causes errors and delays caused by human nature. Therefore, the current study aims to help the experts and increase the accuracy of the analysis results by speeding up the processes. To achieve this goal, a model is proposed that uses technical explanations of security reports written in natural language. Our model basically proposes a method that uses word embedding approaches and multi-class classification algorithms from natural language processing techniques. In order to compare the proposed model more accurately, the NVD database, which is open to everyone and accepted as a reference, was chosen. In addition, previous studies in the literature and the model we propose were compared. In order for the results of the compared models to be analyzed more accurately, our model was trained with the data sets of the studies it was compared and the results were presented clearly. The proposed method showed estimation success in the range of 87.34-96.25% for CVSS 2.0 metrics, and in the range of 84-90% for CVSS 3.1. This study, in which different word embedding and classification algorithms are used together, is one of the limited studies on the latest version of the official scoring system used for classification of software security vulnerabilities. Moreover, it is the most comprehensive and original study in its field due to the size of the dataset it uses and the number of databases evaluated.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A multiclass hybrid approach to estimating software vulnerability vectors and severity score
    (Elsevier, 2021) Kekül, Hakan; Ergen, Burhan; Arslan, Halil
    Classifying detected software vulnerabilities is an important process. However, the metric values of security vectors are manually determined by humans, which takes time and may introduce errors stemming from human nature. These metrics are important because of their role in the calculation of vulnerability severity. It is necessary to use machine learning algorithms and data mining techniques to improve the quality and speed of vulnerability analysis and discovery processes. However, studies in this area are still limited. In this study, vulnerability vectors were estimated using the natural language processing techniques bag of words, term frequency–inverse document frequency, and n-gram for feature extraction together with various multiclass classification algorithms, namely Naïve Bayes, decision tree, k-nearest neighbors, multilayer perceptron, and random forest. Our experiments using a large public dataset facilitate assessment and provide a standard-compliant prediction model for classifying software vulnerability vectors. The results show that the joint use of different techniques and classification algorithms is a promising solution to a multi-probability and difficult-to-predict problem. In addition, our study fills an important gap in its field in terms of the size of the dataset used and because it covers a vulnerability scoring system version that has not yet been extensively studied.
  • Küçük Resim Yok
    Öğe
    Yazılım Güvenlik Açığı Veri Tabanları
    (Osman SAĞDIÇ, 2021) Kekül, Hakan; Ergen, Burhan; Arslan, Halil
    Bir yazılım bileşeninin güvenlik açığı eğiliminin öngörülmesi, yazılım mühendisliğinin zorlayıcı araştırma alanlarından biridir. Bir bileşenin güvenlik açığı eğilimi hakkında önceden bilgi sahibi olmak, test çabasını ve süreyi önemli ölçüde azaltabilir. Yazılım güvenlik açıklarının belirlenmesi ve sınıflandırılması geliştiricilere yazılımın geliştirilmesinde doğru karar verme noktasında yardımcı olacaktır. Bu sebeple yazılımlarda tespit edilen açıklar çok uzun zamandır veri tabanlarına kaydedilmektedir. Farklı araştırma grupları tarafından pek çok veri tabanı oluşmuştur. Bu çeşitlilik her veri tabanına kendi içinde avantajlar ve dezavantajlar sağlamıştır. Bu çalışmada araştırmacıların çalışmalarında hangi veri tabanını kullanacaklarına karar vermelerine yardımcı olmak ve literatürde kullanılan en güncel ve erişime açık olanların sistematik bir listesi oluşturulmuştur. Yazılım güvenlik açığı tespiti ve sınıflandırmasında kullanan birçok farklı veri tabanının incelenmesi ve karşılaştırması yer almaktadır. Çalışmanın sonunda sonuçlar sunulmuş ve gelecekteki çalışmalar için yönlendirici tavsiyeler verilmiştir.
  • Küçük Resim Yok
    Öğe
    Yazılım Güvenlik Açıklarının Skorlanması Ve Kategorisinin Belirlenmesinde Yeni Bir Yöntem
    (2022) Kekül, Hakan; Ergen, Burhan
    Yazılım güvenlik açıkları, şahıslar, şirketler ve ülkeler için finansal risklere ve itibar kayıplarına neden olabilmektedir. Yazılım güvenlik açıklarının giderilmesi, test kaynaklarının yetersizliği ve uzman personel eksikleri nedeni ile istenilen seviyede değildir. Kurumların itibarlarını korumak ve güvenli yazılımlar geliştirmek adına sınırlı kaynaklarını doğru kullanarak, test ve düzeltmeleri planlamaları gerekmektedir. Ancak güvenlik vektörlerinin sahip olduğu metrik değerlerinin tespit edilmesi manuel bir işlem olarak insanlar tarafından yapılmaktadır. Bu nedenle bu süreç, zaman almakta ve insanın doğasından kaynaklanan hatalar barındırabilmektedir. Bu metrikler güvenlik açığı önem derecelerinin hesaplanmasında kullanılmasından dolayı önemlidir. Güvenlik açığı analizi ve keşfi işlemlerinin kalitesini artırmak ve süreçleri hızlandırmak için makine öğrenmesi algoritmalarının ve veri madenciliği tekniklerinin kullanılması gerekmektedir. Ancak bu alanda yapılan çalışmalar hala sınırlıdır. Bu çalışmada doğal dil işleme tekniklerinden Bag of Words, Term Frequency Inverse Document Frequency, Ngram, Word2Vec, Doc2Vec ve FastText özellik çıkarımı yöntemleri kullanılarak güvenlik açığı vektörlerinin farklı çok sınıflı sınıflandırılma algoritmaları ile tahmini gerçekleştirilmiştir. Elde edilen metrik değerleri ile güvenlik açığı önem skorları hesaplanmıştır. Sınıflandırma aşamasında Naive Bayes, Desicion Tree, K-Nearest Neighbors, Multi-layer Perceptron ve Random Forest algoritmaları kullanılmıştır. Kamuya açık büyük bir veri setini kullandığımız deneyler, değerlendirmeyi kolaylaştırır ve yazılım güvenlik açığı vektörlerinin sınıflandırılmasında standartlara uygun bir tahmin modeli sunar. Elde edilen sonuçlar çok olasılıklı ve tahmini zor bir problemde farklı tekniklerin ve sınıflandırma algoritmalarının birlikte kullanımının umut verici olduğunu göstermektedir. Ayrıca çalışmamız, kullandığı veri boyutu ve henüz üzerinde pek çalışılmamış güvenlik açığı skorlama sistemi versiyonlarını kapsaması bakımından alanında önemli bir boşluğu doldurmaktadır.

| Sivas Cumhuriyet Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim