Yazar "Fernine, Yasmine" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adsorptive removal of synthetic dye from its aqueous solution by using chitosan-bentonite composite: DFT and experimental studies(Springer, 2024) Senol, Zeynep Mine; Ertap, Huseyin; Fernine, Yasmine; El Messaoudi, NoureddineThis research investigates the adsorption efficiency of a chitosan-bentonite (Ch-B) composite in removing methyl orange (MO), a common textile dye, from aqueous solutions. The study integrates experimental and theoretical analyses, employing density functional theory (DFT) to gain insights into the molecular interactions between the composite material and MO molecules. The Ch-B composite was characterized using various techniques, including FT-IR spectroscopy, XRD, and SEM-EDX. The experimental results indicate that the Ch-B composite exhibits a high adsorption capacity for MO, with optimal conditions identified for efficient removal. The Langmuir model was found to best fit the experimental data and the adsorption capacity was 117 mg g-1. Adsorption thermodynamics showed that the adsorption process was spontaneous, feasible, and exothermic. DFT calculation results are correlated with experimental findings to confirm theoretical predictions and improve the overall understanding of the adsorption process. Electronic structure calculations reveal the nature of the interactions between the Ch-B composite and MO molecules, including hydrogen bonds and electrostatic forces.Öğe Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies(Springer Heidelberg, 2024) Senol, Zeynep Mine; El Messaoudi, Noureddine; Fernine, Yasmine; Keskin, Zehra SebaThe current study aimed to investigate the biosorption of rhodamine B from aqueous solution using an almond shell as an agricultural solid waste biosorbent. The almond shell biosorbent was characterized via Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) with energy dispersive X-ray (EDX), and point of zero charge (pH(PZC)) analyses. The parameters that influence the biosorption process such as contact time, initial dye concentration, biosorbent dose, temperature, and pH were investigated. According to the correlation coefficient, the data were best outlined by the Langmuir isotherm with adsorption capacity of 14.70 mg g(-1). The adsorption energy found from the D-R model showed that the adsorption process is chemical. The kinetic data were described by the pseudo-second-order kinetic and intraparticle diffusion kinetic models. Thermodynamic parameters were calculated; it was seen that the biosorption process is spontaneous and endothermic. The density functional theory (DFT) calculation results are well-matched with those discovered through experimentation. The results indicate that almond shells could be interesting alternative material used for dye removal from aqueous solutions.