Yazar "Gulpinar, Derya Gul" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The first evaluation of the in vitro effects of silver(I)-N-heterocyclic carbene complexes on Encephalitozoon intestinalis and Leishmania major promastigotes(Springer, 2024) Atas, Ahmet Duran; Akin-Polat, Zuebeyda; Gulpinar, Derya Gul; Sahin, NeslihanEncephalitozoon intestinalis is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for E. intestinalis infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-N-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-N-heterocyclic carbene complexes were evaluated using E. intestinalis spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on Leishmania major promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of E. intestinalis and L. major promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.Öğe Therapeutic Potential of Propolis and Royal Jelly in Encephalitozoon Intestinalis Infection: An in Vitro Study(Springer Int Publ Ag, 2025) Gulpinar, Derya Gul; Polat, Zubeyda Akin; Cetinkaya, UlfetPurposeEncephalitozoon intestinalis is an obligate intracellular microsporidian fungus that causes severe gastrointestinal infections, particularly in immunocompromised individuals. Propolis (PROP), a resinous substance derived from bees, has antimicrobial, anti-inflammatory and antioxidant properties, while royal jelly (RJ) has immunomodulatory, antioxidant and antimicrobial activities. The aim of this study was to investigate the therapeutic potential of PROP and RJ against E. intestinalis.MethodsThe phenolic composition of PROP was analysed by high-performance liquid chromatography with diode array detection, and the chemical components of RJ were evaluated according to ISO12824 standards. The cytotoxicity of PROP and RJ on HEK-293 cells was evaluated using the XTT assay. The three highest non-cytotoxic concentrations of each sample were tested for their effects on E. intestinalis spores by qRT-PCR. Trichrome-stained photomicrographs were used to assess spore density in HEK-293 cells treated with PROP and RJ.ResultsPROP analysis revealed flavonoids such as quercetin, kaempferol, pinocembrin and galangin, as well as phenolic acids such as caffeic and cinnamic acids, known for their bioactive properties. RJ contained mainly proteins, lipids, carbohydrates and sugars, reflecting its role as a nutritionally and biologically active substance. According to the results of this first study evaluating the effect of PROP and RJ on E. intestinalis, all concentrations evaluated in the study showed a significant inhibitory effect on the growth of E. intestinalis spores compared to the control group.ConclusionIn conclusion, we believe that PROP and RJ should be considered as an alternative option in the development of antimicrosporidial drugs due to their potential medicinal and pharmaceutical properties.