Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gulu, Mehmet" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Estimation of Obesity Levels through the Proposed Predictive Approach Based on Physical Activity and Nutritional Habits
    (Mdpi, 2023) Gozukara Bag, Harika Gozde; Yagin, Fatma Hilal; Gormez, Yasin; Gonzalez, Pablo Prieto; Colak, Cemil; Gulu, Mehmet; Badicu, Georgian
    Obesity is the excessive accumulation of adipose tissue in the body that leads to health risks. The study aimed to classify obesity levels using a tree-based machine-learning approach considering physical activity and nutritional habits. Methods: The current study employed an observational design, collecting data from a public dataset via a web-based survey to assess eating habits and physical activity levels. The data included gender, age, height, weight, family history of being overweight, dietary patterns, physical activity frequency, and more. Data preprocessing involved addressing class imbalance using Synthetic Minority Over-sampling TEchnique-Nominal Continuous (SMOTE-NC) and feature selection using Recursive Feature Elimination (RFE). Three classification algorithms (logistic regression (LR), random forest (RF), and Extreme Gradient Boosting (XGBoost)) were used for obesity level prediction, and Bayesian optimization was employed for hyperparameter tuning. The performance of different models was evaluated using metrics such as accuracy, recall, precision, F1-score, area under the curve (AUC), and precision-recall curve. The LR model showed the best performance across most metrics, followed by RF and XGBoost. Feature selection improved the performance of LR and RF models, while XGBoost's performance was mixed. The study contributes to the understanding of obesity classification using machine-learning techniques based on physical activity and nutritional habits. The LR model demonstrated the most robust performance, and feature selection was shown to enhance model efficiency. The findings underscore the importance of considering both physical activity and nutritional habits in addressing the obesity epidemic.
  • Küçük Resim Yok
    Öğe
    Estimation of Obesity Levels with a Trained Neural Network Approach optimized by the Bayesian Technique
    (Mdpi, 2023) Yagin, Fatma Hilal; Gulu, Mehmet; Gormez, Yasin; Castaneda-Babarro, Arkaitz; Colak, Cemil; Greco, Gianpiero; Fischetti, Francesco
    Background: Obesity, which causes physical and mental problems, is a global health problem with serious consequences. The prevalence of obesity is increasing steadily, and therefore, new research is needed that examines the influencing factors of obesity and how to predict the occurrence of the condition according to these factors. This study aimed to predict the level of obesity based on physical activity and eating habits using the trained neural network model. Methods: The chi-square, F-Classify, and mutual information classification algorithms were used to identify the most critical factors associated with obesity. The models' performances were compared using a trained neural network with different feature sets. The hyperparameters of the models were optimized using Bayesian optimization techniques, which are faster and more effective than traditional techniques. Results: The results predicted the level of obesity with average accuracies of 93.06%, 89.04%, 90.32%, and 86.52% for all features using the neural network and for the features selected by the chi-square, F-Classify, and mutual information classification algorithms. The results showed that physical activity, alcohol consumption, use of technological devices, frequent consumption of high-calorie meals, and frequency of vegetable consumption were the most important factors affecting obesity. Conclusions: The F-Classify score algorithm identified the most essential features for obesity level estimation. Furthermore, physical activity and eating habits were the most critical factors for obesity prediction.

| Sivas Cumhuriyet Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim