Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gurkahraman, Kali" seçeneğine göre listele

Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Novel Color Image Watermarking Method with Adaptive Scaling Factor Using Similarity-Based Edge Region
    (Tech Science Press, 2023) Gurkahraman, Kali; Karakis, Rukiye; Takci, Hidayet
    This study aimed to deal with three challenges: robustness, imperceptibility, and capacity in the image watermarking field. To reach a high capacity, a novel similarity-based edge detection algorithm was developed that finds more edge points than traditional techniques. The colored watermark image was created by inserting a randomly generated message on the edge points detected by this algorithm. To ensure robustness and imperceptibility, watermark and cover images were combined in the high-frequency subbands using Discrete Wavelet Transform and Singular Value Decomposition. In the watermarking stage, the watermark image was weighted by the adaptive scaling factor calculated by the standard deviation of the similarity image. According to the results, the proposed edge-based color image watermarking technique has achieved high payload capacity, imperceptibility, and robustness to all attacks. In addition, the highest performance values were obtained against rotation attack, to which sufficient robustness has not been reached in the related studies. © 2023 CRL Publishing. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Bölütlenen beyin bölgelerinin tıbbi görüntü steganografi için değerlendirilmesi
    (Gazi Üniversitesi, 2021) Karakış, Rukiye; Gurkahraman, Kali; Çiğdem, Burhanettin; Oztoprak, Ibrahim; Topaktas, A. Suat
    Tıbbi görüntü steganografisinde, görüntülere veri gizlemenin neden olduğu bozulmanın sonucunda bir hastalığın tanı ve tedavisi etkilenebilir. Bu sebeple, veri görüntülerde elle ya da eşikleme gibi temel tekniklerle belirlenen ilgi olmayan bölgelerde gizlenmektedir ve bu yöntemlerin hiçbiri tümör gibi dokuları bölütlemeyi içermemektedir. Bu çalışma, bir hastalığın tanı ve tedavisinde kullanılan verilerin, bölütleme tabanlı steganografi yöntemi ile görüntüleri bozmadan tek bir ortamda birleştirilerek gizlenmesini amaçlamaktadır. Ayrık dalgacık dönüşümü (ADD) ve k-ortalama kümeleme tabanlı bölütleme yöntemi ile epilepsi hastalarının Manyetik Rezonans (MR) görüntüleri, arka plan, gri madde, beyaz madde ve tümör olarak ayrıştırılmıştır. Gizli mesaj, hasta kişisel bilgilerini, doktor yorumunu, seçilen Elektroansefalogram (EEG) sinyalini ve EEG’ye ait sağlık raporunu içermektedir. Kaotik ve hash fonksiyonlarını kullanan DNA kodlama ile şifrelenen ve ardından sıkıştırılan yüksek kapasiteli mesaj, görüntülerin tümör olmayan piksellerinin en az anlamlı bitlerinde gizlenmiştir. Çalışmada, taşıyıcı ve stego görüntüler arasındaki farklılık, sinyalin gürültü tepe oranı, yapısal benzerlik ölçümü, evrensel kalite indeksi ve korelasyon katsayısı ile tespit edilmiştir. Bu değerler sırasıyla 64,0334 desibel (dB), 0,9979, 0,99701, 0,9993 olarak elde edilmiştir. Analiz sonuçları önerilen yöntemin hastaların yüksek kapasiteli verilerini tek bir dosyada birleştirdiğini ve tıbbi verilerin hem güvenliğini hem de kayıt alanını arttırdığını göstermiştir.
  • Küçük Resim Yok
    Öğe
    Brain Extraction from Magnetic Resonance Images Using UNet modified with Residual and Dense Layers
    (2023) Gurkahraman, Kali; Daşgın, Çağrı
    The main goal of brain extraction is to separate the brain from non-brain parts, which enables accurate detection or classification of abnormalities within the brain region. The precise brain extraction process significantly influences the quality of successive neuroimaging analyses. Brain extraction is a challenging task mainly due to the similarity of intensity values between brain and non-brain structure. In this study, a UNet model improved with ResNet50 or DenseNet121 feature extraction layers was proposed for brain extraction from Magnetic Resonance Imaging (MRI) images. Three publicly available datasets (IBSR, NFBS and CC-359) were used for training the deep learning models. The findings of a comparison between different feature extraction layer types added to UNet shows that residual connections taken from ResNet50 is more successful across all datasets. The ResNet50 connections proved effective in enhancing the distinction of weak but significant gradient values in brain boundary regions. In addition, the best results were obtained for CC-359. The improvement achieved with CC-359 can be attributed to its larger number of samples with more slices, indicating that the model learned better. The performance of our proposed model, evaluated using test data, is found to be comparable to the results obtained in the literature.
  • Küçük Resim Yok
    Öğe
    Brain tumors classification with deep learning using data augmentation
    (Gazi Univ, Fac Engineering Architecture, 2021) Gurkahraman, Kali; Karakis, Rukiye
    Medical image classification is the process of separating data into a specified number of classes. In recent years, Magnetic Resonance Imaging (MRI) has been widely used in the detection and diagnosis of brain tumors. In this study, it was aimed to classify three different brain tumors (glioma, meningioma and pituitary) using convolutional neural network (CNN) on T1-weighted MR images and to determine the efficiency of axial, coronal and sagittal MR planes in classification. The weights were initialized by transferring to CNN from DenseNet121 network, which was previously trained with ImageNet dataset. In addition, data augmentation was performed on MR images using affine and pixel-level transformations. The features obtained from the first fully connected layer of the trained CNN were also classified by support vector machine (SVM), k nearest neighbor (kNN), and Bayes methods. The performances of these classifiers were measured by the sensitivity, specificity, accuracy, area under curve, and the Pearson correlation coefficient on the test dataset. The accuracy values of the developed CNN and CNN-based SVM, kNN, and Bayes classifiers are 0.9860, 0.9979, 0.9907, and 0.8933, respectively. The CNN-based SVM model proposed for brain tumor classification obtained higher performance values than similar studies in the literature. In addition, coronal plane of the brain was found to give better results than other planes in determining the tumor type.
  • Küçük Resim Yok
    Öğe
    Edge-Based Image Watermarking Method with Weighted Discrete Cosine Transform Coefficients
    (Institute of Electrical and Electronics Engineers Inc., 2022) Karakis, Rukiye; Gurkahraman, Kali
    In image watermarking, hybrid approaches increase imperceptibility and robustness. Also, a scaling factor is used, which should be optimized when combining the cover image and watermark. In this study, discrete wavelet transform and discrete cosine transform (DCT) were used together. The watermark-edge image was obtained by randomly inserting the watermark on the horizontal, vertical and diagonal edge points of the cover image detected with Sobel. The DCT frequency components of the watermark-edge image were weighted with a generated matrix and combined with the DCT of the cover image. According to the obtained results, the proposed method is imperceptible and robust to various attacks, especially JPEG compression and noise attacks. © 2022 IEEE.
  • Küçük Resim Yok
    Öğe
    Evaluation of segmented brain regions for medical image steganography
    (Gazi Univ, Fac Engineering Architecture, 2021) Karakis, Rukiye; Gurkahraman, Kali; Cigdem, Burhanettin; Oztoprak, Ibrahim; Topaktas, A. Suat
    In medical image steganography, diagnosis and treatment of a disease can be affected as a result of the distortion caused by the embedding data in the images. For this reason, data is embedded in the region of non-interest determined by basic techniques such as manual or thresholding, and none of these methods involve the segmentation of brain tissues such as tumours. The present study aims to hide the data used in the diagnosis and treatment of a disease without affecting the medical information in the images with a segmentation-based steganography method by combining them into one file format. Magnetic Resonance (MR) images of epilepsy patients were segmented as background, gray matter, white matter, and tumour by discrete wavelet transform (DWT) and k-means clustering-based segmentation method. The hidden data includes confidential patient information, doctor's comment, selected Electroencephalogram (EEG) signals, and EEG health reports. The high-capacity message, which encoded by DNA encryption using chaotic and hash functions, and then compressed, is hidden in the least significant bits of non-tumour pixels of images. In the study, the difference between the cover and the stego images was measured by the peak signal-to-noise ratio, the structural similarity measure, the universal quality index, and the correlation coefficient. These values were obtained as 64.0334 decibels (dB), 0.9979, 0.9971, 0.9993, respectively. A comparison of the results indicates that the proposed method combines the high capacity data of the patients in a single file format and increases both the security and recording space of medical data.
  • Küçük Resim Yok
    Öğe
    Measurement of the appropriateness in career selection of the high school students by using data mining algorithms: A case study
    (IEEE, 2017) Takci, Hidayet; Gurkahraman, Kali; Yelkuvan, Ahmet Firat; Ganzha, M; Maciaszek, L; Paprzycki, M
    Less than optimal choice of the university department is one of the serious problems Turkish high school students have been suffering. There are a number of potential factors affecting the student's choice of her future profession. Some of these have received attention in the literature, but such studies do not always involve an investigation of the relationship between the factors analyzed and subsequent levels of academic achievement. The present study examines the relationship between the level of academic achievement and the students' abilities, interests and expectations, by using different data mining methods and classifiers, as a preliminary work to develop a system that will guide the student to selecting a career that will be a better match for her in the future. C4.5, SVM, Naive Bayes and MLP algorithms are used for the analysis; 10-fold cross validation and train-test validation are used as models to evaluate the classifiers results. The student feature set is obtained through questionnaires and psychometric tests. The questionnaire and the psychometric test were applied to 210 and 52 students respectively, from the Computer Engineering Department at Cumhuriyet University. The class was labeled either "successful" or "unsuccessful" with reference to the grades received by each student in computer engineering courses. The comparisons of various data mining algorithms, different data set results, and models used are presented and discussed.
  • Küçük Resim Yok
    Öğe
    Medikal Görüntülerde Derin Öğrenme ile Steganaliz
    (Gazi Üniversitesi, 2021) Karakış, Rukiye; Gurkahraman, Kali
    Steganaliz ile bir medya dosyasındaki gizli mesajı elde etmek ya da sadece mesajın varlığını tespit etmek amaçlanır. Literatürde medikal verilerin güvenliğini sağlamayı amaçlayan pek çok steganografi yöntemi mevcut olsa da medikal steganaliz çalışması çok azdır. Bu çalışmada, medikal görüntü steganografi yöntemlerinin dayanıklılığının arttırılmasında kullanılabilecek ve medikal bir görüntüde gizli mesajların varlığını tespit edebilecek bir sınıflandırıcı geliştirilmesi amaçlanmıştır. Bunun için karmaşık ve maliyetli öznitelik analizine gerek duymayan bir derin öğrenme mimarisi olan evrişimsel sinir ağı(ESA) taşıyıcı ve stego medikal görüntüler ile eğitilmiş ve test edilmiştir. Doğruluk, kesinlik, hassasiyet ve F1 değerleri sırasıyla 0,964, 0,966, 0965 ve 0964 olarak elde edilmiştir. Bu çalışma, derin öğrenme yönteminin medikal görüntü steganalizinde de kullanılabileceğini ilk kez göstermiştir.
  • Küçük Resim Yok
    Öğe
    Veri çoğaltma kullanılarak derin öğrenme ile beyin tümörlerinin sınıflandırılması
    (Gazi Üniversitesi, 2021) Gurkahraman, Kali; Karakış, Rukiye
    Tıbbi görüntü sınıflandırma, veriyi istenilen sayıda sınıfa ayrıştırma işlemidir. Son yıllarda, Manyetik Rezonans Görüntüleme (MRG) beyin tümörlerinin tespit edilmesinde ve tanısında yaygın olarak kullanılmaktadır. Bu çalışmada, üç farklı beyin tümörünün(gliyom, menenjiyom ve hipofiz bezesi) T1 ağırlıklı MR görüntüleri üzerinde evrişimsel sinir ağı (ESA) kullanılarak sınıflandırılması ve aksiyel, koronel ve sagital MR kesitlerinin sınıflandırmadaki etkinliğinin belirlenmesi amaçlanmıştır. Ağırlıklar, başlangıçta ImageNet veri kümesi için eğitilmiş DenseNet121 ağından ESA’ya transfer edilmiştir. Ayrıca, afin dönüşümü ve piksel-seviye dönüşümü MR görüntülerinde veri çoğaltmada kullanılmıştır. Eğitilen ESA’nın tam bağlantılı ilk katmanından elde edilen öznitelikler, destek vektör makinesi(DVM), k en yakın komşu (kNN) ve Bayes yöntemleriyle de sınıflandırılmıştır. Bu sınıflandırıcıların başarısı test veriseti üzerinde duyarlılık, belirlilik, doğruluk, eğri altında kalan alan ve korelasyon katsayısı ile ölçülmüştür. ESA, ve ESA tabanlı DVM, kNN ve Bayes sınıflandırıcılarının elde ettiği doğruluk değerleri sırasıyla 0.9860, 0.9979, 0.9907 ve 0.8933’ dür. Beyin tümör sınıflandırma için önerilen ESA tabanlı DVM modeli literatürdeki benzer çalışmalardan daha yüksek performans değerleri elde etmiştir. Ayrıca beyin tümör tipini görüntülerden belirlemede beyin koronel kesitleri diğer kesitlere göre daha etkindir.

| Sivas Cumhuriyet Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim