Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Radi, Smaail" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Phenylamine/Amide Grafted in Silica as Sensing Nanocomposites for the Removal of Carbamazepine: A DFT Approach
    (Mdpi, 2022) Algarra, Manuel; Jodeh, Shehdeh; Aqel, Israa; Hanbali, Ghadir; Radi, Smaail; Tighadouini, Said; Alkowni, Raed
    This study aimed to remove carbamazepine from aqueous solutions, using functional silica phenylamine (SiBN), which is characterized and showed excellent chemical and thermal stability. Adsorbents based on silica were developed due to their unusually large surface area, homogenous pore structure, and well-modified surface properties, as silica sparked tremendous interest. It was determined to develop a novel silica adsorbent including phenylamine and amide (SiBCON). The adsorbents obtained were analyzed by various spectroscopy devices, including SEM, FT-IR and TGA analysis. The maximum removal rates for carbamazepine were 98.37% and 98.22% for SiBN and SiBCON, respectively, when optimized at room temperature, pH 9.0, initial concentration of 10 mg center dot L-1 and contact time of 15 min. Theoretical tools are widely used in the prediction of the power of interactions between chemical systems. The computed data showed that new amine modified silica is quite effective in terms of the removal of carbamazepine from aqueous solution. Calculation binding energies and DFT data showed that there is a powerful interaction between amine-modified silica and carbamazepine.
  • Küçük Resim Yok
    Öğe
    Synthesis, crystal structure, DFT, ?-glucosidase and ?-amylase inhibition and molecular docking studies of (E)- N?-(4-chlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide
    (Elsevier, 2021) Karrouchi, Khalid; Fettach, Saad; Anouar, El Hassane; Tuzun, Burak; Radi, Smaail; Alharthi, Abdulrahman I.; Ghabbour, Hazem A.
    In this work, a novel crystal i.e. (E)-N'-(4-chlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide has been synthesized and characterized using various spectroscopic techniques. The (E)-configuration of the azomethine (N=CH) was confirmed by single crystal X-ray analysis. The molecule crystallizes in the monoclinic space group, P21/c, a = 15.629(9) angstrom, b = 7.152(4) angstrom, c = 14.707(9) angstrom, beta = 111.061(15)degrees, V = 1534.1(6) angstrom(3) and Z = 4. In addition, the elucidated molecular structure was confirmed by comparing the predicted Z-matrix geometries and spectroscopic data with the experimental ones. DFT calculations have been carried out in gas and IEFPCM solvent at the B3LYP/6-31+G(d,p). The in vitro anti-diabetic potential of the title compound was evaluated against alpha-glucosidase and alpha-amylase enzymes. Molecular docking studies showed that the various interactions tightly anchored the title compound to the active site, which makes it a more potent alpha-glucosidase inhibitor compared to well-known Acarbose. (C) 2021 Elsevier B.V. All rights reserved.

| Sivas Cumhuriyet Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim