Yazar "Sharma, Ajit" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Handling Keywords: MXene Nanomaterial Hazardous pollutant Adsorption Environmental remediation(Pergamon-Elsevier Science Ltd, 2022) Assad, Humira; Fatma, Ishrat; Kumar, Ashish; Kaya, Savas; Vo, Dai-Viet N.; Al-Gheethi, Adel; Sharma, AjitWith the massive development of industrialization, multiple ecological contaminants in gaseous, liquid, and solid forms are vented into habitats, which is currently at the forefront of worldwide attention. Because of the possible damage to public health and eco-diversity, high-efficiency clearance of these environmental contaminants is a serious concern. Improved nanomaterials (NMs) could perform a significant part in the exclusion of contaminants from the atmosphere. MXenes, a class of two-dimensional (2D) compounds that have got tremendous consid-eration from researchers for a broad array of applications in a variety of industries and are viewed as a potential route for innovative solutions to identify and prevent a variety of obstreperous hazardous pollutants from environmental compartments due to their exceptional innate physicochemical and mechanical features, including high specific surface area, physiological interoperability, sturdy electrodynamics, and elevated wettability. This paper discusses the recent progress in MXene-based nanomaterials' applications such as envi-ronmental remediation, with a focus on their adsorption-reduction characteristics. The removal of heavy metals, dyes, and radionuclides by MXenes and MXene-based nanomaterials is depicted in detail, with the adsorption mechanism and regeneration potential highlighted. Finally, suggestions for future research are provided to ensure that MXenes and MXene-based nanomaterials are synthesized and applied more effectively.Öğe Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review(Elsevier Sci Ltd, 2022) Assad, Humira; Kaya, Savas; Kumar, P. Senthil; Vo, Dai-Viet N.; Sharma, Ajit; Kumar, AshishBiofuel cells (BFCs) are devices that use the metabolic reactions in microorganisms during the decomposition of organic pollutants to convert chemical energy from organic materials to electrical energy. Owing to their nonpolluting characteristics and price-effectiveness in contrast to fossil fuels, biofuels are rapidly gaining attraction as substitute resources of renewable energy. Although BFCs have numerous applications including waste management, biomaterials, and portable purposes, encouraging their use is difficult due to the limited lifetime and reduced power density. The majority of BFCs created to date are only capable of meeting the energy requirements of biomedical short-term implanted devices. To accelerate their development, however, the attention is shifting to the deployment of technology that will enhance their productivity. Nanotechnological approaches appear to be the most promising in this context. Nanotechnologies are one of the most intriguing scientific and technological revolutions in recent history, with applications in biofuels and bioenergy. Nanoparticles are gaining popularity among scientists due to their unique qualities, which allow them to be used in a variety of industries including agriculture, electronic devices, medicines, and food processing. The use of nanoscale materials in the production of BFCs has been extensively researched and reported as a viable technique for enhancing their performance. In this review, insights about BFCs, classification, and beneficial applications of biofuel cells are explored. The purpose of this work is to highlight recent advances in the development of various nanomaterials, such as metallic nanomaterials, magnetic nanomaterials, carbon nanoparticles, etc. for enhancing the efficiency of biofuel cells as well as biofuel production such as biodiesel, biohydrogen, biogas, and bioethanol synthesis, intending to enhance process yields. Furthermore, based on the current knowledge of numerous influencing factors on the efficacy of nanoparticles, current prospects and research needs in biofuel industrial operations are also identified and discussed.Öğe Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review(Elsevier Sci Ltd, 2022) Thakur, Abhinay; Kumar, Ashish; Kaya, Savas; Vo, Dai-Viet N.; Sharma, AjitWith the rapid increase in the global population, domestic and industrial energy consumption is rising at its peak, resulting in the incessant depletion of fossil fuels such as coal, oil and gas; thus, entailing the development of sustainable technologies based on renewable raw materials. Biofuels appear to be an ideal sustainable solution that could help meet future energy supply demands while also contributing to a reduction in greenhouse gas emissions. However, the most significant hurdle in the effective production and utilization of biofuels is the formation of inhibitory compounds such as aliphatic acids, phenolic substances, ketones, alcohols and furan derivatives during the pretreatment and conversion procedure, which results in lower cell density, prolonged microbial lag time and hinders the effective production of biofuels. To address these challenges, nanomaterials are primarily utilized in biofuels production, which enhances the performance of bioprocesses used during the biomass conversion to biofuel by efficiently suppressing the inhibitory compounds formed during the conversion procedure, thus resulting in enhanced biofuel yield. This review is intended to give a brief about the several recent advances made in the utilization of various kind of nanomaterials for suppressing the inhibitory compounds of biofuel production such as bioethanol, biohydrogen and biodiesel under specific conditions. Furthermore, the role of nano-immobilized biocatalysts in suppressing inhibitory compounds has been addressed, with an emphasis on the safety issues and limitations associated with the utilization of nanomaterials in the current approach.