Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sharma, Kusum" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Mechanistic insights into the reaction pathway for efficient cationic dye photocatalytic degradation and the importance of the enhanced charge isolation over dual Z-scheme CeO2/BiOCl/Ag2WO4 photocatalyst
    (Elsevier, 2024) Sharma, Kusum; Sonu, Sonu; Sudhaik, Anita; Ahamad, Tansir; Kaya, Savas; Thakur, Sourbh; Van Le, Quyet
    Fabricating a multi-component heterojunction system with enhanced charge isolation efficacy remains challenging. A photoactive CeO2/BiOCl/Ag2WO4 heterojunction was successfully constructed using a coprecipitation technique to degrade crystal violet and methylene blue dyes. It was found through a combination of characterization and experiments that the dual Z-scheme system not only augmented the charge isolation and migration efficiency but also maintained superior redox ability with extended visible light absorption capacity. In the CeO2/BiOCl/Ag2WO4 system, 97 % of methylene blue and 98 % of crystal violet were degraded in 75 min using 50 mg/L of ternary photocatalyst. The rate of reaction of CeO2/BiOCl/Ag2WO4 for methylene blue (0.0445 min(-1)) and crystal violet (0.05053 min(-1)) exhibited a multi-fold increase in comparison to the bare photocatalysts. The electron spin resonance (ESR) analysis has remarkably identified hydroxyl and superoxide radicals (center dot OH, center dot O-2(-)) as the primary reactive species in the photodegradation process. Liquid chromatographymass spectrometry analysis was utilized to obtain potential degradation pathways for methylene blue and crystal violet, respectively. The dual charge transferal mechanism by the ternary photocatalyst resulted in a significant increase in photocatalytic activity. It provided new perspectives on the principles guiding the rational development of a multicomponent system for environmental remediation.
  • Küçük Resim Yok
    Öğe
    Unraveling the synergism mechanistic insight of O-vacancy and interfacial charge transfer in WO3-x decorated on Ag2CO3/BiOBr for photocatalysis of water pollutants: Based on experimental and density functional theory (DFT) studies
    (Academic Press Inc Elsevier Science, 2024) Sharma, Kusum; Sonu; Sudhaik, Anita; Ahamad, Tansir; Kaya, Savas; Nguyen, Lan Huong; Maslov, Mikhail M.
    Photocatalysis has been widely used as one of the most promising approaches to remove various pollutants in liquid or gas phases during the last decade. The main emphasis of the study is on the synergy of vacancy engineering and heterojunction formation, two widely used modifying approaches, to significantly alter photocatalytic performance. The vacancy-induced Ag2CO3/BiOBr/WO3-x heterojunction system has been fabricated using a co-precipitation technique to efficiently abate methylene blue (MB) dye and doxycycline (DC) antibiotic. The as-fabricated Ag2CO3/BiOBr/WO3-x heterojunction system displayed improved optoelectronic characteristic features because of the rational combination of dual charge transferal route and defect modulation. The Ag2CO3/ BiOBr/WO3-x system possessed 97% and 74% photodegradation efficacy for MB and DC, respectively, with better charge isolation and migration efficacy. The ternary photocatalyst possessed a multi-fold increase in the reaction rate for both MB and DC, i.e., 0.021 and 0.0078 min(-1), respectively, compared to pristine counterparts. Additionally, more insightful deductions about the photodegradation routes were made possible by the structural investigations of MB and DC using density functional theory (DFT) simulations. This study advances the understanding of the mechanisms forming visible light active dual Z-scheme heterojunction for effective environmental remediation.

| Sivas Cumhuriyet Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim