Yazar "Toraman, Ayse" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evaluated periodontal tissues and oxidative stress in rats with neuropathic pain-like behavior(Springer, 2023) Toraman, Ayse; Toraman, Emine; Ozkaraca, Mustafa; Budak, HarunBackground Oxidative stress has a critical effect on both persistent pain states and periodontal disease. Voltage-gated sodium NaV1.7 (SCN9A), and transient receptor potential ankyrin 1 (TRPA1) are pain genes. The goal of this study was to investigate oxidative stress markers, periodontal status, SCN9A, and TRPA1 channel expression in periodontal tissues of rats with paclitaxel-induced neuropathic pain-like behavior (NPLB). Methods and results Totally 16 male Sprague Dawley rats were used: control (n=8) and paclitaxel-induced pain (PTX) (n=8). The alveolar bone loss and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels were analyzed histometrically and immunohistochemically. Gingival superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities (spectrophotometric assay) were measured. The relative TRPA1 and SCN9A genes expression levels were evaluated using quantitative real-time PCR (qPCR) in the tissues of gingiva and brain. The PTX group had significantly higher alveolar bone loss and 8-OHdG compared to the control. The PTX group had significantly lower gingival SOD, GPx and CAT activity than the control groups. The PTX group had significantly higher relative gene expression of SCN9A (p=0.0002) and TRPA1 (p=0.0002) than the control in gingival tissues. Increased nociceptive susceptibility may affect the increase in oxidative stress and periodontal destruction. Conclusions Chronic pain conditions may increase TRPA1 and SCN9A gene expression in the periodontium. The data of the current study may help develop novel approaches both to maintain periodontal health and alleviate pain in patients suffering from orofacial pain.Öğe Increased nociceptive sensitivity is associated with periodontal inflammation and expression of chronic pain genes in gingival tissues of male rats(Elsevier Ireland Ltd, 2022) Toraman, Ayse; Toraman, Emine; Ozkaraca, Mustafa; Budak, HarunObjective: This study aimed to evaluate the inflammatory response, hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2), and voltage-gated potassium (Kv) 9.1 channel expression in rats with paclitaxel-induced neuropathic pain-like behavior. Methods: Sixteen male Sprague Dawley rats were divided equally into two groups: control and paclitaxel-induced pain (PTX). The attachment loss and inflammatory cell infiltrate levels were analyzed histometrically and immunohistochemically. The gene expression of HCN2 and KCNS1 was analyzed by qPCR in the brain and gingival tissues. Results: The attachment loss and prominent infiltration of inflammatory cells were significantly higher in the PTX group than in the control groups. In gingival tissues; the expression levels of HCN2 (p = 0,0011) were significantly higher and KCNS1 (p = 0,0003) were significantly lower in the PTX group than in the control groups. Conclusion: Increased nociceptive sensitivity, may play a role in periodontal inflammation. KCNS1 may decrease and HCN2 expression may increase in periodontium in permanent chronic pain states. The results of the present study may be helpful in developing new approaches to alleviate pain and maintain periodontal health in patients suffering from orofacial pain.