Yazar "Touir, R." seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anti-corrosion Properties of 2-Phenyl-4(3H)-quinazolinone-Substituted Compounds: Electrochemical, Quantum Chemical, Monte Carlo, and Molecular Dynamic Simulation Investigation(Springer, 2020) Kacimi, Y. El; Touir, R.; Alaoui, K.; Kaya, S.; Abousalem, A. Salem; Ouakki, M.; Touhami, M. EbnIn this investigation, attempts have been made to study the corrosion inhibition properties of three new 2-phenyl-4(3H)-quinazolinone-substituted compounds for mild steel in 1.0 M hydrochloric acid medium. The evaluation was carried out using mass loss, electrochemical impedance spectroscopy, and polarization curves measurement. It is shown that 2-phenyl-4(3H)-quinazolinone-substituted compounds are very good inhibitor’s for mild steel corrosion in 1.0 M hydrochloric acid medium, which acts as mixed-type inhibitors. So, the inhibition efficiency was increased with inhibitor concentration in the order Q-p-Cl > Q-m-Cl > Q-H, which depends on their molecular structures and the chloride para/metapositions. Electrochemical impedance spectroscopy has shown that all compounds act by the formation of a protective film at the metal surface. The correspondence between inhibition property and molecular structure of the 2-phenyl-4(3H)-quinazolinone-substituted compounds is investigated, using density functional theory (DFT). The effect of molecular structure on the inhibition efficiency has been explored by quantum chemical computations and obvious correlations were observed. The binding energies of tested compounds on Fe(110) surfaces were calculated using molecular dynamics simulation. Experimental and DFT study was further supported by molecular dynamic (MD) simulations study. © 2020, Springer Nature Switzerland AG.Öğe Corrosion inhibition studies for mild steel in 5.0 M HCl by substituted phenyltetrazole(SPRINGER HEIDELBERG, 2017) El Kacimi, Y.; Azaroual, M. A.; Touir, R.; Galai, M.; Alaoui, K.; Sfaira, M.; Touhami, M. Ebn; Kaya, S.The inhibition efficiency of three substituted phenyltetrazole compounds, namely 5-(4-chlorophenyl)-1H-tetrazole (Cl-PT), 5-(4-methoxyphenyl)-1H-tetrazole (MO-PT), and 5-phenyl-1H-tetrazole (PT), for mild steel corrosion in 5.0 M HCl solution was investigated using weight loss measurements and electrochemical study. It is showed that these compounds are good inhibitors for mild steel corrosion in 5.0 M HCl solution which act as cathodic type inhibitors. So, the inhibition efficiency was increased with inhibitor concentration in the order of Cl-PT > MO-PT > PT which depended on their molecular structures. It is found also that these compounds toke its performance at different temperatures range from 298 to 328 K. In addition, the thermodynamic adsorption parameters at different concentrations were investigated and discussed. Finally, it is seen that the inhibition efficiency of the studied compounds increased with immersion time to reach a maximum at 12 h.Öğe Experimental and theoretical studies for mild steel corrosion inhibition in 1.0 M HCl by three new quinoxalinone derivatives(ELSEVIER SCIENCE BV, 2016) Tazouti, A.; Galai, M.; Touir, R.; Touhami, M. Ebn; Zarrouk, A.; Ramli, Y.; Saracoglu, M.; Kaya, S.; Kandemirli, F.; Kaya, C.Three quinoxalinone derivatives, namely (E)-3-styrylquinoxalin-2(1H)-one (SQ), (E)-3-(4methoxystyryl)quinoxalin-2(1H)-one (MOSQ) and (E)-3-(4-methoxystyry1)-7-methylquinoxalin-2(1H)-one (MOSMQ) were synthesized and characterized. Thus, their inhibition effects on mild steel corrosion in 1.0 M HCl medium were investigated using weight loss method, electrochemical measurements. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 298-328 K. Polarization measurements indicated that, the studied compounds act as a mixed type inhibitors, the inhibition efficiency depends on their concentrations and followed the order MOSQ> MOSMQ> SQ Electrochemical impedance spectroscopy showed that all compounds act by the formation of a protective film at the metallic surface. The adsorption of three inhibitors on steel surface obeyed Langmuir model, thus the thermodynamic and kinetic parameters were calculated and discussed. In the part based on DFF calculations of this study, some electronic properties of studied molecules were calculated and discussed with the help of B3LYP/6-311G (d,p), B3LYP/6-311 ++G (d,p) and B3LYP/6-311G ++ (2d,2p) methods. The theoretical and experimental results are in good agreement. (C) 2016 Elsevier B.V. All rights.reserved.Öğe New triazepine carboxylate derivatives: correlation between corrosion inhibition property and chemical structure(Springer Heidelberg, 2020) Alaoui, K.; El Kacimi, Y.; Galai, M.; Serrar, H.; Touir, R.; Kaya, S.; Kaya, C.In this investigation, attempts have been made to study the corrosion inhibition properties of three new triazepine carboxylate compounds for mild steel in 1.0 M hydrochloric acid medium. The evaluation was carried out using mass loss, electrochemical impedance spectroscopy and polarization curves measurement. Impedance diagrams and Bode plots for uninhibited and inhibited systems were analyzed using Zview program. The fitted data observed trails in nearly the same pattern as the experimental results. It is showed that triazepine carboxylate compounds are very good inhibitors for mild steel corrosion in 1.0 M hydrochloric acid medium which act as mixed-type inhibitors. So, the inhibition efficiency was increased with inhibitor concentration in the order Cl-Me-CN > Me-CN > Cl-Me-CO2Et which depended on their molecular structures. Electrochemical impedance spectroscopy showed that all compounds act by the formation of a protective film at the metal surface. Surface analyses via SEM and Optical 3D profilometry were used to investigate the morphology of the steels before and after immersion in 1.0 M HCl solution containing inhibitors. The correspondence between inhibition property and molecular structure of the triazepine carboxylate compounds was investigated, using density functional theory (DFT). Experimental and DFT study was further supported by molecular dynamic simulations study.Öğe Quantum chemical and molecular dynamic simulation studies for the identification of the extracted cinnamon essential oil constituent responsible for copper corrosion inhibition in acidified 3.0 wt% NaCl medium(Elsevier, Şubat 2021) Dahmani, K.; Galai, M.; Ouakki, M.; Cherkaoui M.; Touir, R.; Erkan, Sultan; Kaya, Savaş; El Ibrahimi, B.The influence of the extracted cinnamon essential oil (CiO) on the copper corrosion resistance in acidified 3.0 wt% NaCl (pH = 2) medium was investigated by using electrochemical measurements and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDS). So, in order to identify the component of CiO responsible for corrosion inhibition of copper in corrosive solution, the density functional theory (DFT) calculations and molecular dynamics simulation were used. Potentiodynamic polarization showed that the tested natural product acts as cathodic-type inhibitor. Electrochemical impedance spectroscopy indicated that the inhibition efficiency increases with CiO concentrations to get up a maximum value of 89% at 200 ppm. In addition, SEM/EDS analysis in the presence of 200 ppm CiO indicated that copper surface was exempt for all corrosion products, confirming its offered protection. Finally, the major calculated quantum chemical descriptors obtained from DFT calculations indicated that the anticorrosion efficiency responsibility attributes to P8 and P46, with the predominance of P8. In the same, the molecular dynamics simulation indicated that the adsorption energy follows the order: P5 (-61.071 kJ mol−1) > P46 (-58.070 kJ mol−1) > P8 (-42.938 kJ mol−1) on Cu (1 1 1) and P8 (-21.220 kJ mol−1) > P46 (-20.066 kJ mol−1) > P5 (-19.591 kJ mol−1) on CuO2 (1 1 0), suggesting a strong adsorption of P8 on oxide copper (1 1 0) surface and consequently therefore the performance of extracted CiO can be attributed to P8, which is parallel to the copper (1 1 1) surface contrary to other molecules P46 and P5.