Theoretical and experimental insights about the adsorption of uranyl ion on a new designed Vermiculite-Polymer composite

Yükleniyor...
Küçük Resim

Tarih

15.04.2022

Yazarlar

Şimşek, Selçuk
Kaya Savaş
Şenol, Zeynep Mine
Ulusoy, Halil İbrahim
Katim, Kp
Özer, Ali
Altunay Nail
Brahmia, Ameni

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

A new Polyacrylamide (PAA)-Vermiculite (V) composite was synthesized and characterized with the help of FTIR, SEM, and PZC analyses. The effects of ion concentration, pH and ionic strength parameters to adsorption process were investigated in detail. The obtained data were analyzed and discussed in the light of the Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. It was shown that the adsorption of UO22+ increased with the increasing of the pH while the increasing or decreasing of the ionic strength did not lead to significant changes in adsorption process. The adsorption of uranyl ion on new designed material followed an endothermic and spontaneous process with increased disorderliness at adsorbate/adsorbent interface. It was noticed that the adsorption process exhibits a pseudo-second-order kinetics. The interaction mechanism regarding to the interaction between uranyl ion and new designed Polyacrylamide (PAA)-Vermiculite (V) composite was highlighted in the light of Density Functional Theory (DFT) calculations. Both theoretical and experimental analyses made proved that the designed new material with a adsorption capacity of 0.375 mol kg−1 is a potential adsorbent for effective removal of uranyl ions from solutions.

Açıklama

Anahtar Kelimeler

Uranyl Adsorption Vermiculite Composite Density Functional Theory Chemical Reactivity

Kaynak

Journal of Molecular Liquids

WoS Q Değeri

Scopus Q Değeri

Cilt

352

Sayı

Künye

A new Polyacrylamide (PAA)-Vermiculite (V) composite was synthesized and characterized with the help of FTIR, SEM, and PZC analyses. The effects of ion concentration, pH and ionic strength parameters to adsorption process were investigated in detail. The obtained data were analyzed and discussed in the light of the Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. It was shown that the adsorption of UO2 2+ increased with the increasing of the pH while the increasing or decreasing of the ionic strength did not lead to significant changes in adsorption process. The adsorption of uranyl ion on new designed material followed an endothermic and spontaneous process with increased disorderliness at adsorbate/adsorbent interface. It was noticed that the adsorption process exhibits a pseudo-secondorder kinetics. The interaction mechanism regarding to the interaction between uranyl ion and new designed Polyacrylamide (PAA)-Vermiculite (V) composite was highlighted in the light of Density Functional Theory (DFT) calculations. Both theoretical and experimental analyses made proved that the designed new material with a adsorption capacity of 0.375 mol kg1 is a potential adsorbent for effective removal of uranyl ions from solutions.