• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Open Access Home
  • Rektörlüğe Bağlı Bölümler
  • Araştırma Çıktıları
  • Öksüz Yayınlar Koleksiyonu - WoS
  • View Item
  •   Open Access Home
  • Rektörlüğe Bağlı Bölümler
  • Araştırma Çıktıları
  • Öksüz Yayınlar Koleksiyonu - WoS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Increased cell proliferation and R.Msp1 fragmentation induced by 5-aza-2 '-deoxycytidine in rat testes related to the gene imprinting mechanism

Date

2000

Author

Ozdemir, O
Bulut, HE
Korkmaz, M
Onarlioglu, B
Colak, A

Metadata

Show full item record

Abstract

DNA methylation is one of the crucial mechanisms for cellular and tissue differentiation during developmental stages in mammals. 5-aza-2'-deoxycytidine, a specific cytosine DNA Methyltransferase inhibitor, is known to cause DNA hypomethylation in CpG, CpNpG and CCGG sequences. Therefore the present study was designed to determine the effects of 5-aza-2'-deoxycytidine on the germinal cells of the adult ra I: testicular tissue. Rat testicular tissues from the 5-aza-2'-deoxycytidine treated experimental and non-treated control groups were processed for light microscopy and also for genomic DNA isolation assays. The isolated genomic DNAs were digest ed with R.Msp1 in order to determine the methyl pattern differences in the enzyme cognate CCGG sequence. Testicular tissues from treated rats showed increased cell proliferation when investigated at the light microscopical level. On the other hand, genomic DNA of these proliferative tissue showed high fragmentation sizes of R.Msp1 digestion when compared to controls. While the R.Msp1 digested control group DNA fragmentation condensed at approximately 4700-5100 bps size, the experimental group DNA fragmentation was condensed at 700-900 bps size. In addition, 5-aza-2'-deoxycytidine has effects on increased ce:ll proliferation via the loss of somatic de novo gene imprinting. These results imply that abnormally imprinted normal somatic cells in mammals are susceptible to epigenetic modification. These results also suggest that the genomic DNA of testicular tissues from control rats is resistant to R.Msp1 while DNA from the experimental group testicular cells demonstrating high proliferation rate could not resist to R.Msp1 digestion due to DNA hypomethylation in CCGG sequence. In conclusion, it could be suggested that the reversal of gene imprinting in germinal cells may cause an increased cellular proliferation and R.Msp1 fragmentation when induced by 5-aza-2'-deoxycytidine.

Source

EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY

Volume

52

Issue

4

URI

https://hdl.handle.net/20.500.12418/11677

Collections

  • Makale Koleksiyonu [5200]
  • Öksüz Yayınlar Koleksiyonu - WoS [6162]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




Open Access Policy
About Open Access
User Guide
Contact

DSpace@Cumhuriyet

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Sivas Cumhuriyet University || Library || Open Access Policy || About Open Access || User Guide || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, Turkey
If you find any errors in content, please contact: acikerisim-yardim@cumhuriyet.edu.tr

Creative Commons License
DSpace@Cumhuriyet by Sivas Cumhuriyet University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

Sivas Cumhuriyet University is a member of the following institutions.


DSpace 6.3

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.