Show simple item record

dc.contributor.authorDurmuşlar, A.S.
dc.contributor.authorAlper Billur, C.
dc.contributor.authorTürkoğlu,A.
dc.contributor.authorUngan, F.
dc.date.accessioned2022-05-16T07:31:09Z
dc.date.available2022-05-16T07:31:09Z
dc.date.issued1July 2021tr
dc.identifier.citation[1] X. Peng, Mechanisms of shape control and evolution of nanocrystals, Adv. Mater. 15 (2003) 459. [2] W.W. Yu, A. Wang, X. Peng, Formation and stability of size-shape-, and struc turecontrolled CdTe nanocrystals: ligand effects on monomers and nanocrystals, Chem. Mater. 15 (2003) 4300. [3] D. Ter Haar, Problems in Quantum Mechanics, Courier Corporation, 2014. [4] F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rep. 251 (1995) 267. [5] S.H. Dong, Factorization Method in Quantum Mechanics, Springer, 2007. [6] Z.Q. Ma, B.W. Xu, Quantum correction in exact quantization rules, Europhys. Lett. 69 (2005) 685. [7] Z.Q. Ma, A. Gonzalez-Cisneros, B.W. Xu, S.H. Dong, Energy spectrum of the trigonometric Rosen Morse potential using an improved quantization rule, Phys. Lett. A 371 (2007) 180. [8] W.C. Qiang, S.H. Dong, Proper quantization rule, Europhys. Lett. 89 (2010) 10003. [9] M. Razavy, A potential model for torsional vibrations of molecules, Phys. Lett. A 82 (1981) 7. [10] Q.T. Xie, New quasi-exactly solvable double-well potentials, J. Phys. A 45 (2012) 175302. [11] B.H. Chen, Y. Wu, Q.T. Xie, Heun functions and quasi-exactly solvable double-well potentials, J. Phys. A 46 (2012) 035301. [12] A. Sitnitsky, Analytic description of inversion vibrational mode for ammonia molecule, Vib. Spectrosc. 93 (2017) 36. [13] Q. Dong, F. Serrano, G.H. Sun, J. Jing, S.H. Dong, Semiexact solutions of the Razavy potential, Adv. High Energy Phys. 2018 (2018) 9105825. [14] S. Dong, Q. Dong, G.H. Sun, S. Femmam, S.H. Dong, Exact solutions of the Razavy cosine type potential, Adv. High Energy Phys. 2018 (2018) 5824271. [15] P.P. Fiziev, Novel relations and new properties of confluent Heun’s functions and their derivatives of arbitrary order, J. Phys. A 43 (2009) 035203. [16] R.R. Hartmann, M. Portnoi, Quasi-exact solution to the Dirac equation for the hyperbolic-secant potential, Phys. Rev. A 89 (2014) 012101. [17] G.H. Sun, S.H. Dong, K.D. Launey, T. Dytrych, J.P. Draayer, Shannon Information entropy for a hyperbolic double-well potential, Int. J. Quantum Chem. 115 (2015) 891. [18] M. Razavy, An exactly soluble Schrödinger equation with a bistable potential, Amer. J. Phys. 48 (1980) 285. [19] H. Konwent, One-dimensional Schrodinger equation with a new type double-well potential, Phys. Lett. A 118 (1986) 467. [20] E.H. Li, B.L. Weiss, The optical properties of AlGaAs/GaAs hyperbolic quantum well structures, J. Appl. Phys. 70 (1991) 1054. [21] H.R. Christiansen, M.S. Cunha, Solutions to position-dependent mass quantum mechanics for a new class of hyperbolic potentials, J. Math. Phys. 54 (2013) 122108. [22] F.K. Wen, Z.Y. Yang, C. Liu, W.L. Yang, Y.Z. Zhang, Exact polynomial solutions of Schrödinger equation with various hyperbolic potentials, Commun. Theor. Phys. 61 (2014) 153. [23] C.A. Downing, On a solution of the Schrödinger equation with a hyperbolic double-well potential, J. Math. Phys. 54 (2013) 072101. [24] R.L. Hall, N. Saad, Exact and approximate solutions of Schrödinger’s equation with hyperbolic double-well potentials, Eur. Phys. J. Plus 131 (2016) 277. [25] D. Schiöberg, The energy eigenvalues of hyperbolical potential functions, Mol. Phys. 59 (1986) 1123. [26] S. Dong, G.H. Sun, B. Falaye, S.H. Dong, Semi-exact solutions to position dependent mass Schrödinger problem with a class of hyperbolic potential 𝑉0 𝑡𝑎𝑛ℎ(𝑎𝑥), The European Phys. J. Plus 131 (2016) 1. [27] H. Nyengeri, R. Nizigiyima, E. Ndenzako, F. Bigirimana, D. Niyonkuru, A. Girukwishaka, Application of the Fröbenius Method to the Schrödinger equation for a spherically symmetric hyperbolic potential, Open Access Library J. 5 (2018) e4950. [28] E. Kasapoglu, H. Sari, I. Sokmen, J.A. Vinasco, D. Laroze, C.A. Duque, Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots, Physica E 126 (2021) 114461. [29] S.H. Dong, W. Qiang, J. Garcia-Revalo, Analytical approximations to the Schrödinger equation for a second Pöschl-Teller-like potential with centrifugal term, Internat. J. Modern Phys. A 23 (2008) 1537. [30] B.J. Falaye, Energy spectrum for trigonometric Pöschl–Teller potential, Can. J. Phys. 90 (2012) 1259. [31] H. Alıcı, T. Tanriverdi, General solution of the Schrödinger equation for some hyperbolic potentials, Few-Body Syst 61 (2020) 41. [32] L. Jiang, L.Z. Yi, C.S. Jia, Exact solutions of the Schrödinger equation with position-dependent mass for some Hermitian and non-Hermitian potentials, Phys. Lett. A 345 (2005) 279. [33] H. Eğrifes, D. Demirhan, F. Büyükkılıç, Polynomial solutions of the Schrödinger equation for the deformed hyperbolic potentials by Nikiforov–Uvarov method, Phys. Scr. 59 (1999) 90. [34] R. Khordad, B. Mirhosseini, Application of Tietz potential to study optical properties of spherical quantum dots, Pramana – J. Phys. 85 (2015) 723. [35] A. Keshavarz, M. Karimi, Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells, Phys. Lett. A 374 (2010) 2675. [36] M. Karimi, A. Keshavarz, A. Poostforush, Linear and nonlinear intersubband opti cal absorption and refractive index changes of asymmetric double semi-parabolic quantum wells, Superlattices Microstruct. 49 (2011) 441. [37] F. Ungan, M.E. Mora-Ramos, C. Duque, E. Kasapoglu, H. Sari, I. Sokmen, Linear and nonlinear optical properties in a double inverse parabolic quantum well under applied electric and magnetic fields, Superlattices Microstruct. 66 (2014) 129. [38] D.B. Hayrapetyan, E.M. Kazaryan, H.Kh. Tevosyan, Optical properties of spherical quantum dot with modified Pöschl-Teller potential, Superlattices Microstruct. 64 (2013) 204. [39] T.A. Sargsian, M.A. Mkrtchyan, H.A. Sarkisyan, D.B. Hayrapetyan, Effects of external electric and magnetic fields on the linear and nonlinear optical prop erties of InAs cylindrical quantum dot with modified Pöschl-Teller and Morse confinement potentials, Physica E 126 (2021) 114440. [40] J. Radovanovic, V. Milanovic, Z. Ikonic, D. Indjin, Intersubband absorption in Pöschl–Teller-like semiconductor quantum wells, Phys. Lett. A 269 (2000) 179. [41] S. Panda, B.K. Panda, Optical properties in symmetric and asymmetric Pöschl Teller potentials under intense laser field, Superlattices Microstruct. 73 (2014) 160. [42] K. Batra, V. Prasad, Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes, Eur. Phys. J. B 91 (2018) 298. [43] O. Aytekin, S. Turgut, V. Üstoğlu Ünal, E. Akşahin, M. Tomak, Nonlinear optical properties of a Woods–Saxon quantum dot under an electric field, Physica E 54 (2013) 257. [44] L. Lu, W. Xie, H. Hassanabadi, The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential, J. Lumin. 131 (2011) 2538. [45] S. Mo, K. Guo, G. Liu, X. He, J. Lan, Z. Zhou, Exciton effect on the linear and nonlinear optical absorption coefficients and refractive index changes in Morse quantum wells with an external electric field, Thin Solid Films 710 (2020) 138286. [46] S. Sakiroglu, E. Kasapoglu, R.L. Restrepo, C.A. Duque, I. Sökmen, Intense laser field-induced nonlinear optical properties of morse quantum well, Phys. Status Solidi b 254 (2016) 1. [47] A. Mandal, S. Sarkar, A.P. Ghosh, M. Ghosh, Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential, Chem. Phys. 463 (2015) 149. [48] J. Ganguly, S. Saha, S. Pal, M. Ghosh, Noise-driven optical absorption coefficients of impurity doped quantum dots, Physica E 75 (2016) 246. 6 A.S. Durmuslar, C.A. Billur, A. Turkoglu et al. Optics Communications 499 (2021) 127266 [49] S. Saha, S. Pal, J. Ganguly, M. Ghosh, Exploring optical refractive index change of impurity doped quantum dots driven by white noise, Superlattices Microstruct. 88 (2015) 620. [50] Q. Dong, G.H. Sun, J. Jing, S.H. Dong, New findings for two new type sine hyperbolic potentials, Phys. Lett. A 383 (2019) 270. [51] F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. da Silva Jr, Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well, J. Appl. Phys. 105 (2009) 123111. [52] J.B. Xia, W.J. Fan, Electronic structures of superlattices under in-plane magnetic field, Phys. Rev. B 40 (1989) 8508.tr
dc.identifier.urihttps://hdl.handle.net/20.500.12418/13121
dc.description.abstractIn this present study, we have investigated theoretically the effect of structure parameters (η and κ) and high-frequency intense laser field (ILF) on the linear and nonlinear optical properties of a GaAs quantum well (QW) with new type of hyperbolic confinement potential. Within the framework of the effective-mass and parabolic band approximations, we have computed the confined subband energy levels and their corresponding densities of probability by using the diagonalization method. Besides, we evaluated the total optical absorption coefficients (TOACs) and total refractive index changes (TRICs). The obtained numerical findings show that an increase of the η (κ) structure parameter causes an increase (decrease) in amplitude in TOACs and a blue (red) shift of the resonance energy spectrum. In addition, with the increase of the ILF, the resonance energy spectrum shifts to blue, while the amplitude of TOACs (TRICs) increased (decreased). We think that the obtained these results can be useful in the design of new device’s generation employed in optoelectronic domain.tr
dc.language.isoengtr
dc.publisherOptics Communicationstr
dc.relation.isversionof10.1016/j.optcom.2021.127266tr
dc.rightsinfo:eu-repo/semantics/closedAccesstr
dc.subjectNew type of hyperbolic confinement potential Optical nonlinearities Intense laser fieldtr
dc.titleOptical properties of a GaAs quantum well with new type of hyperbolic confinement potential: Effect of structure parameters and intense laser fieldtr
dc.typearticletr
dc.contributor.departmentSivas Meslek Yüksekokulutr
dc.identifier.volume499tr
dc.identifier.startpage127266tr
dc.relation.publicationcategoryUluslararası Editör Denetimli Dergide Makaletr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record