• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Open Access Home
  • Rektörlüğe Bağlı Bölümler
  • Araştırma Çıktıları
  • Öksüz Yayınlar Koleksiyonu - WoS
  • View Item
  •   Open Access Home
  • Rektörlüğe Bağlı Bölümler
  • Araştırma Çıktıları
  • Öksüz Yayınlar Koleksiyonu - WoS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum chemical calculations, molecular dynamic (MD) simulations and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 2: Bis-azo dye derivatives

Date

2018

Author

Madkour, Loutfy H.
Kaya, Savas
Guo, Lei
Kaya, Cemal

Metadata

Show full item record

Abstract

The adsorption behavior and inhibition mechanism of five synthesized bis-azo dye (BAD) derivatives on the corrosion of iron in aerated HNO3 and NaOH were investigated by performing potentiostatic polarization, weight loss (WL), thermometric and UV-visible spectra measurements. DFT calculations is applied to study the correlation between corrosion inhibition and global reactivity descriptors such as: E-HOMO, E-LUMO, molecular gap (Delta E), the dipole moment (mu), the global hardness (eta), softness(S), electro-negativity (chi) (k), proton affinity (PA), electrophilicity (omega), nucleophilicity (epsilon), electrons transferred from inhibitors to metal surface (Delta N), initial molecule-metal interaction energy (Delta psi), total electronic energy (E) and the energy change during electronic back-donation process (Delta E (b-d)). To mimic the real environment of corrosion inhibition, molecular dynamic (MD) simulations in aqueous phase have also been modelled consisting of all concerned species (inhibitor molecule, H2O, H3O+ ion, NO3- ion, OH- and Fe surface). The results confirmed that BAD molecules inhibit iron by adsorption behavior through donating and accepting electrons together with the formation of [Fe (II) and Fe (III)-BAD] chelate complex compounds. BAD's behavior is mainly chemisorption with some physisorption obeyed Frumkin and that of El-Awady adsorption isotherm. Kinetic parameters such as: (K-b, 1/y, K-ads. f, Delta G degrees (ads)) have been determined and discussed. Binding energies of BAD molecules on Fe (110) surface followed the order: BAD_2 > BAD_1 > BAD_3 > BAD_4> BAD_5. Theoretical results were found to be consistent with the experimental data reported. Our results provide important atomic/molecular insights into the anticorrosive mechanism of inhibitor molecules, which could help in understanding the organic-metal interface and designing more appropriate organic corrosion inhibitors. (C) 2018 Elsevier B.V. All rights reserved.

Source

JOURNAL OF MOLECULAR STRUCTURE

Volume

1163

URI

https://dx.doi.org/10.1016/j.molstruc.2018.03.013
https://hdl.handle.net/20.500.12418/6223

Collections

  • Makale Koleksiyonu [5200]
  • Makale Koleksiyonu [5745]
  • Öksüz Yayınlar Koleksiyonu - WoS [6175]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




Open Access Policy
About Open Access
User Guide
Contact

DSpace@Cumhuriyet

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Sivas Cumhuriyet University || Library || Open Access Policy || About Open Access || User Guide || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, Turkey
If you find any errors in content, please contact: acikerisim-yardim@cumhuriyet.edu.tr

Creative Commons License
DSpace@Cumhuriyet by Sivas Cumhuriyet University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

Sivas Cumhuriyet University is a member of the following institutions.


DSpace 6.3

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.