Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Rafik, Abdellatif" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Crystal growth, morphological, mechanical, spectroscopic studies, optical properties, molecular docking, ADME/T, Hirshfeld surfaces analysis and theoretical calculations of hybrid organic-inorganic phosphate compound
    (Elsevier, 2024) Rafik, Abdellatif; Tuzun, Burak; Zouihri, Hafid; EL Ammari, Lahcen; Safi, Zaki S.; Wazzan, Nuha A.; Guedira, Taoufiq
    Molecular organic-inorganic single crystals of 4-carboxyanilinium dihydrogenphosphate [4-CADP] have been grown by the slow evaporation technique. The crystal structure was re-investigated by single-crystal X ray diffraction (SCXRD) analysis without signifiant differences from the previous study. 3D Hirshfeld surface and 2D fingerprint plot studies were performed to understand the intermolecular interactions of the 4-CADP crystal in graphical representation. Functional groups identification was studied with FT-IR spectroscopy. High trans-parency and a wide band gap of 5.44 eV were observed with UV-Vis spectroscopy. Geometrical structure of the 4-CADP compound was performed using the Density Function Theory (DFT) method at the B3LYP/3-21G and PBEPBE/3-21G levels of theory, along with the HF/3-21G basis set. The equilibrium geometry, highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO), and molecular electrostatic potential map (MEP) were also calculated and presented. MEP a visual representation of the chemically active sites and comparative reactivity of atoms. Results revealed O-HMIDLINE HORIZONTAL ELLIPSISO and N-HMIDLINE HORIZONTAL ELLIPSISO contacts have the largest impact the Hirshfeld surface. The mechanical properties of the 4-CADP crystal were studied experimentally Vicker's microhardness technique, which revealed that the grown crystal belonged to the softer category. 4-CADP crystal void estimation reveals the mechanical strength and porosity of the material.Last, it was tried to compare the biological activities of the studied hybrid molecule against enzymes: the crystal structure of acetylcholinesterase (AChE) (PDB ID: 4M0E), the crystal structure of butyrylcholinesterase (BChE) (PDB ID: 5NN0), crystal structure of alpha-galactosidase (alpha-Gly) (PDB ID: 1T0O), crystal structure of human carbonic anhydrase I (hCA I) (PDB ID: 2CAB), and the crystal structure of human carbonic anhydrase II (hCA II) (PDB ID: 5AML). Afterwards, ADME/T analysis was performed to predict the effects of molecules on human metabolism.
  • Küçük Resim Yok
    Öğe
    Growth, molecular docking, Hirshfeld surface analysis and first-principles investigation on the structural, morphological and mechanical properties of the OIH hybrid: C2H8N4S22+•2HSO4-under pressure
    (Elsevier, 2025) Eddhimi, Ayoub; Rafik, Abdellatif; Tuzun, Burak; Jhaa, Gaurav; Yamni, Khalid; Zouihri, Hafid
    Single crystals of the dithiobis-(formamidinium) bis-(hydrogen sulfate) C2H8N4S22+center dot 2HSO4- hybrid compound was growth by slow evaporation method at room temperature. The crystal structure was rediscussed with more detailed structural investigations than the previously reported structure (CCDC 1,876,435). The compound was characterized through several techniques, including Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible absorption analysis, and Hirshfeld surface analysis (SHG). Also, this study provides a comprehensive analysis of the Organic-Inorganic Hybrid (OIH) properties under different pressures using the ultrasoft pseudopotential method as implemented on the density functional theory (DFT), with the PerdewBurke-Ernzerhof (PBE) GGA approximation for exchange-correlation. The paper explores a wide range of characteristics, such as structure, elasticity, morphology, mechanics, and electronics of the title compound and simulates their evolution under hydrostatic pressures ranging from 5 to 20 GPa. As results, significant variations in structure and electronic parameter's values and mechanical properties have been observed. Furthermore, NCI, ELF, Hirshfeld Surface and Molecular docking analysis of the studied hybrid crystalline material have been discussed. Molecular docking simulations were used to assess the examined molecule's possible antibacterial action against the protein SARS-CoV-2 S Omicron Spike B.1.1.529 (PDB ID: 7QO9 and 7QTK).
  • Küçük Resim Yok
    Öğe
    Morphology studies, optic proprieties, hirschfeld electrostatic potential mapping, docking molecular anti-inflammatory, and dynamic molecular approaches of hybrid phosphate
    (Elsevier, 2024) Rafik, Abdellatif; Tuzun, Burak; Zouihri, Hafid; Poustforoosh, Alireza; Hsissou, Rachid; Elhenaey, Ahmed A.; Guedira, Taoufiq
    The above current study intends to identify new prospects for developing viable epilepsy treatments. To attain this purpose, the created P-carboxylammonium di-hydrogen monohydrate called (I). The research reveals the existence of both intermolecular (O-H & ctdot;O) as well as N-H & ctdot;O intramolecular hydrogen bonding in crystal packing patterns. As the fingerprint plots illustrate the different sorts of interactions and the hybrid system's relative abundance of each, However, the molecular docking results clearly demonstrate five typical hydrogen bonds, with the best binding posture of -4.757 kcal/mol for Lys244, Val272, Arg241, and Glu273 proteins when docked with (I) ligand. As a result, we may deduce that if the (I) ligand is a pharmaceutical used to treat epilepsy, it will probably be more potent than the conventional medication. As a result, (I) was simulated using molecular dynamics (MD) and is proposed as a viable therapeutic target for antiepileptic therapy. Reduced Density Gradient (RDG) analysis, highlighted the presence of significant non-covalent interactions (NCI) that contribute to the stability and structural integrity of the compound, emphasizing the importance of these interactions in the context of its potential applications, particularly in drug design and molecular interactions. Finally, the ELF and LOL analyses collectively enhance the understanding of the electronic structure of compound I, revealing critical information about electron distribution, localization, and the nature of interactions within the molecular framework. These insights are essential for predicting the compound's reactivity and potential applications in fields such as pharmaceuticals and materials science.

| Sivas Cumhuriyet Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim