Growth, molecular docking, Hirshfeld surface analysis and first-principles investigation on the structural, morphological and mechanical properties of the OIH hybrid: C2H8N4S22+•2HSO4-under pressure

Küçük Resim Yok

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Single crystals of the dithiobis-(formamidinium) bis-(hydrogen sulfate) C2H8N4S22+center dot 2HSO4- hybrid compound was growth by slow evaporation method at room temperature. The crystal structure was rediscussed with more detailed structural investigations than the previously reported structure (CCDC 1,876,435). The compound was characterized through several techniques, including Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible absorption analysis, and Hirshfeld surface analysis (SHG). Also, this study provides a comprehensive analysis of the Organic-Inorganic Hybrid (OIH) properties under different pressures using the ultrasoft pseudopotential method as implemented on the density functional theory (DFT), with the PerdewBurke-Ernzerhof (PBE) GGA approximation for exchange-correlation. The paper explores a wide range of characteristics, such as structure, elasticity, morphology, mechanics, and electronics of the title compound and simulates their evolution under hydrostatic pressures ranging from 5 to 20 GPa. As results, significant variations in structure and electronic parameter's values and mechanical properties have been observed. Furthermore, NCI, ELF, Hirshfeld Surface and Molecular docking analysis of the studied hybrid crystalline material have been discussed. Molecular docking simulations were used to assess the examined molecule's possible antibacterial action against the protein SARS-CoV-2 S Omicron Spike B.1.1.529 (PDB ID: 7QO9 and 7QTK).

Açıklama

Anahtar Kelimeler

Density functional theory, Hybrid compound growth, Mechanical and morphological properties, Hirshfeld surface analysis, Pressure effect

Kaynak

Journal of Molecular Structure

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

1324

Sayı

Künye