Comparison of NR and UniClust Databases for Protein Secondary Structure Prediction

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Three-dimensional structure prediction is one of the important problems in bioinformatics and theoretical chemistry. One of the most important steps in the three-dimensional structure prediction is the estimation of secondary structure. Improving the accuracy rate in protein secondary structure prediction depends on computed attributes as well as the classification algorithms. In multiple alignment methods, which are often used to extract an attribute, the calculated values differ according to the database used for the alignment. For this reason, it is important to use a suitable database against which the target proteins are aligned to compute profile feature vectors. In this study, 5 different datasets are generated for the CB513 benchmark with the aid of two different alignment methods and three different databases. The profile features are fed as input to a two-stage hybrid classifier. According to the experimental results, the highest accuracy rate is obtained when UniClust database is used at the first stage of HHBlits alignment to calculate PSSM values and NR database is used at the first stage of HHBlits alignment to calculate structural profile matrices.

Açıklama

26th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 02-05, 2018 -- Izmir, TURKEY

Anahtar Kelimeler

Secondary Structure Prediction, Protein Structure Prediction, Multi Alignment, Protein Database

Kaynak

2018 26th Signal Processing and Communications Applications Conference (Siu)

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

Sayı

Künye