Coordination Polymers as Corrosion Inhibitors
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Corrosion is a destructive phenomenon that has catastrophic outcomes on technical and commercial applications, specifically in oil and gas-related enterprises. Thus, mitigating metallic corrosion is a crucial need of technological, economic, environmental and elegant need that could save huge money on equipment, machinery and construction. Polymers have become a preferred candidate for the corrosion inhibition of numerous metals/alloys in various corrosive media due to their ability to form complexes with metal ions that occupy a large area by their functional groups, thereby preventing the metal surface from aggressive ions existing in the corrosive medium. For instance, it is remarkable to attain the inhibition efficacy of 93% at an optimum concentration of 800 ppm at 50 °C. Taking into account such extreme corrosion inhibiting efficacy of coordination polymers; herein, in this chapter, we discuss the effects of novel coordination polymers such as polyacrylamide (PACM), cerium(III)-melamine coordination polymer (CMCP), copper(I) coordination polymer:1H-benzotriazole: poly[l3-benzotria- zolato-j3N1:N2:N3-copper(I)], etc., on the control or reduction of corrosion. Additionally, the impact of temperature on the corrosion rate will be discussed along with the relative inhibition mechanisms. © 2022 American Chemical Society