Kişiselleştirilmiş Yabancı Dil Öğrenimi İçin Makine Öğrenmesi Yöntemleriyle İlgi Alanı Tahmini
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Küreselleşen dünyada yabancı dil bilmenin önemi giderek artmaktadır. Dil öğretim zorluklarını azaltmak için önemli yöntemlerden biri de, teknoloji dünyasındaki gelişmeler ile birlikte daha kolay yönetebilir hale gelen kişiselleştirilmiş öğrenim yaklaşımlardır. Kişiselleştirilmiş öğrenim sayesinde aynı sınıf ortamında bile, her bireyin istek ve ihtiyaçlarına göre yöntem ve materyal sunulabilmektedir. Dil öğretiminde, içeriklerin kişilerin ilgi alanlarına uygun olarak sunulmasının öğrenimin verimini artıracağı düşünülmektedir. Bu kapsamda çalışmada, kişiselleştirilmiş İngilizce öğretiminde alt yapı olarak kullanılmak üzere makine öğrenmesi yöntemleri ile bireylerin ilgi alanı tahmini yapılmıştır. Çalışmada öncelikli olarak bir anket tasarlanarak farklı sektörlerden 164 kişiye uygulanmıştır. Tasarlanan ankette kişilerin istedikleri kadar seçim yapacakları seçeneklerden oluşan 11 soru ve ilgi alanını seçebilecekleri bölüm bulunmaktadır. Birey en az biri zorunlu olmak üzere teknoloji, sağlık, iş yaşamı, farklı kültürler, spor ve güzel sanatlar ilgi alanlarından dilediği kadarını seçebilmektedir. Toplanan bu veriler matematiksel hale dönüştürülerek k-en yakın komşu, rastgele orman ve yapay sinir ağı yöntemleri ile analizler yapılmıştır. Kullanılan yöntemlerim parametre optimizasyonu için geleneksel ızgara arama yönteminden daha kısa sürede daha iyi sonuçlar üreten Bayesian optimizasyon yönteminden faydalanılmıştır. Bir kullanıcı birden fazla ilgi alanı seçebildiği için tüm makine öğrenmesi modelleri çoklu etiket tahmini yaklaşımı ile oluşturulmuştur. Bu bağlamda her bir kişi için ilgi duyuyor ve duymuyor olacak şekilde 6 ilgi alanı için ayrı ayrı tahmin yapılmış ve başarı oranı da bu durum göze alınarak hesaplanmıştır. Analiz sonuçları incelendiğinde en iyi başarı oranı %78.12 ile rastgele orman algoritması ile elde edilmiştir. Bu sonucun tasarlanacak sistem için yeterli olduğu, veri sayısının artırılması ile birlikte de daha iyi sonuçlar elde edileceği öngörülmektedir.