Switched Reluctance Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends

dc.contributor.authorAksöz, Ahmet
dc.date.accessioned2024-03-07T12:53:05Z
dc.date.available2024-03-07T12:53:05Z
dc.date.issued2021tr
dc.date.submitted2021
dc.departmentFen Bilimleri EnstitĂĽsĂĽtr
dc.description.abstractThis paper presents a detailed literature review on switched reluctance motor (SRM) and drive systems in electric vehicle (EV) powertrains. SRMs have received increasing attention for EV applications owing to their reliable structure, fault tolerance ability and magnet free design. The main drawbacks of the SRM are torque ripple, low power density, low power factor and small extended speed range. Recent research shows that multi-stack conventional switched reluctance motors (MSCSRM) and multi-stack switched reluctance motors with a segmental rotor (MSSRM-SR) are promising alternative solutions to reduce torque ripples, increase torque density and increase power factor. Different winding configurations such as single-layer concentrated winding (SLC), single layer mutually coupled winding (SLMC), double layer concentrated winding (DLC), double layer mutually coupled winding (DLMC) and fully-pitched winding (FP) are introduced in the literature in recent years to increase average torque and to decrease torque ripples. This research analyzes winding methods and structure of the SRMs, including conventional and segmental rotors. They have been compared and assessed in detail evaluation of torque ripple reduction, torque/power density increase, noise/vibration characteristics and mechanical structure. In addition, various drive systems are fully addressed for the SRMs, including conventional drives, soft-switching drives, drives with standard inverters and drives with an integrated battery charger. In this paper, the SRM control methods are also reviewed and classified. These control methods include strategies of torque ripple reduction, fault-diagnosis, fault-tolerance techniques and sensorless control. The key contributions of this paper provide a useful basis for detailed analysis of modeling and electromechanical design, drive systems, and control techniques of the SRMs for EV applications.tr
dc.identifier.urihttps://hdl.handle.net/20.500.12418/14948
dc.language.isoenen_US
dc.relation.publicationcategoryUluslararası Hakemli Dergide Makale - Kurum Öğretim Elemanıtr
dc.rightsinfo:eu-repo/semantics/openAccesstr
dc.titleSwitched Reluctance Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trendsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
YĂĽkleniyor...
Küçük Resim
İsim:
9.pdf
Boyut:
8.37 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: