Hochstadt-Lieberman Type Theorems for a Diffusion Operator on a Time Scale
dc.authorid | https://orcid.org/0000-0002-4224-0972 | tr |
dc.contributor.author | Adalar, İbrahim | |
dc.date.accessioned | 2023-06-20T11:01:04Z | |
dc.date.available | 2023-06-20T11:01:04Z | |
dc.date.issued | 30/03/2022 | tr |
dc.department | Eğitim Bilimleri Enstitüsü | tr |
dc.description.abstract | In this paper, we consider a half inverse problem for a diffusion operator on a time scale which is the union of an interval and another arbitrary time scale such as T =[0; a1] [ T1. We give a Hochstadt-Lieberman type theorem for this problem and some appropriate examples. | tr |
dc.identifier.endpage | 496 | tr |
dc.identifier.issue | 3 | tr |
dc.identifier.scopus | 2-s2.0-85102592956 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 485 | tr |
dc.identifier.uri | https://hdl.handle.net/20.500.12418/13784 | |
dc.identifier.volume | 45 | tr |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.relation.publicationcategory | Uluslararası Hakemli Dergide Makale - Kurum Öğretim Elemanı | tr |
dc.rights | info:eu-repo/semantics/restrictedAccess | tr |
dc.title | Hochstadt-Lieberman Type Theorems for a Diffusion Operator on a Time Scale | en_US |
dc.type | Article | en_US |