Polymeric organic Amberlite™ IRC-200 extract resin compound as a novel corrosion inhibitor for carbon steel in 1.0 M HCl acid: detail experimental, surface, molecular studies (DFT + MC/MD) and kinetic isotherm adsorption

dc.contributor.authorBensalah, Jaouad
dc.contributor.authorHmada, Abdelfettah
dc.contributor.authorBouzakraoui, Said
dc.contributor.authorDkhireche, Nadia
dc.contributor.authorZarrouk, Abdelkader
dc.contributor.authorErdoğan, Şaban
dc.contributor.authorTüzün, Burak
dc.date.accessioned2025-05-04T16:42:07Z
dc.date.available2025-05-04T16:42:07Z
dc.date.issued2025
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractThe potential adsorbent for inhibitors of corrosion in HCl 1.0 M was investigated using experimental and modeling data on a novel cationic polymeric resin composite called Amberlite™ IRC-200. The resin has a significantly better ability to adsorb the Ni(II) ions. Molecular dynamics (MD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and DFT theory were among the methods used to examine the polymeric adsorbent resin. In this work, the adsorbent cationic polymeric resin is used to suppress corrosion in HCl 1.0 M. Experimental results demonstrated that ACQ and DAQ significantly increased MS corrosion resistance; results from Tafel polarization demonstrated that resin polymeric compounds exhibited disordered-type inhibitory properties with varying corrosion rates. Results from the highest best impedance experiments showed that at 100 ppm, ACQ inhibited performance to a 94.9% degree. Adsorption of the cationic adsorbent polymeric resin followed the most recent findings in the Langmuir model, and the most recent estimations of thermodynamic parameters indicated physisorption. Scanning transmission electron microscopy was used to investigate the MS morphological investigation. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
dc.description.sponsorshipIbn Tofaïl University of Kenitra
dc.description.sponsorshipUniversidad Autónoma Metropolitana, UAM
dc.description.sponsorshipKing Abdulaziz University, KAU
dc.description.sponsorshipNational Center for Scientific and Technical Research CNRST
dc.identifier.doi10.1007/s11356-025-35884-9
dc.identifier.endpage5573
dc.identifier.issn0944-1344
dc.identifier.issue9
dc.identifier.pmid39932609
dc.identifier.scopus2-s2.0-85217777645
dc.identifier.scopusqualityQ1
dc.identifier.startpage5551
dc.identifier.urihttps://doi.org/10.1007/s11356-025-35884-9
dc.identifier.urihttps://hdl.handle.net/20.500.12418/35087
dc.identifier.volume32
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofEnvironmental Science and Pollution Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250504
dc.subjectAdsorption resin
dc.subjectAmberlite™ IRC-200 polymeric
dc.subjectDFT/MC/MD
dc.subjectMild steel corrosion
dc.subjectSEM/IR/EDS/XRD
dc.titlePolymeric organic Amberlite™ IRC-200 extract resin compound as a novel corrosion inhibitor for carbon steel in 1.0 M HCl acid: detail experimental, surface, molecular studies (DFT + MC/MD) and kinetic isotherm adsorption
dc.typeArticle

Dosyalar