• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Open Access Home
  • Fakülteler
  • Sivas Cumhuriyet Üniversitesi Teknoloji Fakültesi
  • Mekatronik Mühendisliği Bölümü
  • Mekatronik Mühendisliği Bölümü Makale Koleksiyonu
  • View Item
  •   Open Access Home
  • Fakülteler
  • Sivas Cumhuriyet Üniversitesi Teknoloji Fakültesi
  • Mekatronik Mühendisliği Bölümü
  • Mekatronik Mühendisliği Bölümü Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic classification of volcanic rocks from thin section images using transfer learning networks

Thumbnail

View/Open

Automatic_classification_of_volcanic_rocks.pdf (1.574Mb)

Date

2021

Author

Polat, Özlem
Polat, Ali
Ekici, Taner

Metadata

Show full item record

Citation

Received: 27 July 2020 / Accepted: 19 February 2021 / Published online: 9 March 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract

In this study, efficient deep transfer learning models are proposed to classify six types of volcanic rocks, and this paper has a novelty in classifying volcanic rock types for the first time using thin section images. Convolutional neural network-based DenseNet121 and ResNet50 networks, which are transfer learning methods, are used to extract the features from thin section images of rocks, and the classification process is carried out with a single-layer fully connected neural network. The proposed models are trained and tested on 1200 thin section images using four different optimizers (Adadelta, ADAM, RMSprop, SGD). AUC, accuracy, precision, recall and f1-score are used as performance metrics. Proposed models are run 10 times for each optimizer. DenseNet121 classifies volcanic rock types using RMSprop with an average accuracy of 99.50% and a maximum of 100.00%, and ResNet50 classifies using ADAM with an average accuracy of 98.80% and a maximum of 99.72%. Thus, the applied deep transfer learning is promising in geosciences and can be used to identify rock types quickly and accurately.

Source

Neural Computing and Applications

Volume

33

URI

https://hdl.handle.net/20.500.12418/12820

Collections

  • Mekatronik Mühendisliği Bölümü Makale Koleksiyonu [6]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




Open Access Policy
About Open Access
User Guide
Contact

DSpace@Cumhuriyet

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Sivas Cumhuriyet University || Library || Open Access Policy || About Open Access || User Guide || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, Turkey
If you find any errors in content, please contact: acikerisim-yardim@cumhuriyet.edu.tr

Creative Commons License
DSpace@Cumhuriyet by Sivas Cumhuriyet University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

Sivas Cumhuriyet University is a member of the following institutions.


DSpace 6.3

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.