• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Open Access Home
  • Fakülteler
  • Sivas Cumhuriyet Üniversitesi Teknoloji Fakültesi
  • Mekatronik Mühendisliği Bölümü
  • Mekatronik Mühendisliği Bölümü Makale Koleksiyonu
  • View Item
  •   Open Access Home
  • Fakülteler
  • Sivas Cumhuriyet Üniversitesi Teknoloji Fakültesi
  • Mekatronik Mühendisliği Bölümü
  • Mekatronik Mühendisliği Bölümü Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of brain tumors from MR images using deep transfer learning

Thumbnail

View/Open

Classification_of_brain_tumors.pdf (258.3Kb)

Date

2021

Author

Polat, Özlem
Güngen, Cahfer

Metadata

Show full item record

Citation

Accepted: 14 December 2020 / Published online: 4 January 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

Classification of brain tumors is of great importance in medical applications that benefit from computer-aided diagnosis. Misdiagnosis of brain tumor type will both prevent the patient from responding effectively to the applied treatment and decrease the patient’s chances of survival. In this study, we propose a solution for classifying brain tumors in MR images using transfer learning networks. The most common brain tumors are detected with VGG16, VGG19, ResNet50 and DenseNet21 networks using transfer learning. Deep transfer learning networks are trained and tested using four different optimization algorithms (Adadelta, ADAM, RMSprop and SGD) on the accessible Figshare dataset containing 3064 T1-weighted MR images from 233 patients with three common brain tumor types: glioma (1426 images), meningioma (708 images) and pituitary (930 images). The area under the curve (AUC) and accuracy metrics were used as performance measures. The proposed transfer learning methods have a level of success that can be compared with studies in the literature; the highest classification performance is 99.02% with ResNet50 using Adadelta. The classification result proved that the most common brain tumors can be classified with very high performance. Thus, the transfer learning model is promising in medicine and can help doctors make quick and accurate decisions.

Source

Journal of Supercomputing

Volume

77

URI

https://hdl.handle.net/20.500.12418/12823

Collections

  • Mekatronik Mühendisliği Bölümü Makale Koleksiyonu [6]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




Open Access Policy
About Open Access
User Guide
Contact

DSpace@Cumhuriyet

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Sivas Cumhuriyet University || Library || Open Access Policy || About Open Access || User Guide || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, Sivas, Turkey
If you find any errors in content, please contact: acikerisim-yardim@cumhuriyet.edu.tr

Creative Commons License
DSpace@Cumhuriyet by Sivas Cumhuriyet University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

Sivas Cumhuriyet University is a member of the following institutions.


DSpace 6.3

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.