Show simple item record

dc.contributor.authorBillur A.
dc.contributor.authorGürkanlı E.
dc.contributor.authorArı V.
dc.contributor.authorKöksal M.
dc.date.accessioned2022-05-13T11:07:36Z
dc.date.available2022-05-13T11:07:36Z
dc.date.issued19 July 2021tr
dc.identifier.citation1. S. Chatrchyan et al., CMS collaboration. Phys. Lett. B 716, 30 (2012) 2. G. Aad et al., ATLAS collaboration. Phys. Lett. B 716, 1 (2012) 3. G. Belanger, F. Boudjema, Phys. Lett. B 288, 201 (1992) 4. G. Belanger, F. Boudjema, Y. Kurihara, D. Perret-Gallix, A. Semenov, Eur. Phys. J. C 13, 283 (2000) 5. M. Baak et al., The Snowmass EW WG report, arXiv:1310.6708 (2013) 6. M. Koksal, Mod. Phys. Lett. A 29, 1450184 (2014) 7. M. Koksal, Eur. Phys. J. Plus 130, 75 (2015) 8. M. Koksal, A. Senol, Int. J. Mod. Phys. A 30, 1550107 (2015) 9. A. Senol, M. Koksal, JHEP 1503, 139 (2015) 10. A. Senol, M. Koksal, Phys. Lett. B 742, 143–148 (2015) 11. A. Senol, M. Koksal, S.C. Inan, Adv. High Energy Phys. 2017, 6970587 (2017) 12. M. Koksal, A. Senol, V. Ari, Adv. High Energy Phys. 2016, 8672391 (2016) 13. A. Gutierrez-Rodriguez, C.G. Honorato, J. Montano, M.A. Perez, Phys. Rev. D 89, 034003 (2014) 14. S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimper, Phys. Rev. D 89, 114004 (2014) 15. S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimper, JHEP 1502, 165 (2015) 16. C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706, 142 (2017) 17. K. Ye, D. Yang, Q. Li, Phys. Rev. D 88, 015023 (2013) 18. O.J.P. Eboli, M.C. Gonzalez-Garcia, S.F. Novaes, Nucl. Phys. B 411, 381 (1994) 19. O.J.P. Eboli, M.B. Magro, P.G. Mercadante, S.F. Novaes, Phys. Rev. D 52, 15 (1995) 20. O.J.P. Eboli, M.C. Gonzalez-Garcia, Phys. Rev. D 93(9), 093013 (2016) 21. O.J.P. Eboli, J.K. Mizukoshi, Phys. Rev. D 64, 075011 (2001) 22. O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti, Phys. Rev. D 69, 095005 (2004) 23. M. Beyer et al., Eur. Phys. J. C 48, 353 (2006) 24. T. Pierzchala, K. Piotrzkowski, Nucl. Phys. Proc. Suppl. 179180, 257 (2008) 123 Eur. Phys. J. Plus (2021) 136:784 Page 21 of 21 784 25. S. Atag, I. Sahin, Phys. Rev. D 70, 053014 (2004) 26. S. Atag, I. Sahin, Phys. Rev. D 75, 073003 (2007) 27. I. Sahin, B. Sahin, Phys. Rev. D 86, 115001 (2012) 28. G. Perez, M. Sekulla, D. Zeppenfeld, Eur. Phys. J. C 78(9), 759 (2018) 29. A.S. Kurova, EYu. Soldatov Phys. Atom. Nucl. 80(4), 725 (2017) 30. J. Kalinowski et al., Eur. Phys. J. C 78, 403 (2018) 31. G. Perez, M. Sekulla, D. Zeppenfeld, Eur. Phys. J. C 78, 759 (2018) 32. A.I. Ahmadov, arXiv:1806.03460 33. A. Senol, Int. J. Mod. Phys. A 29, 1450148 (2014) 34. A.M. Sirunyan et al., Phys. Rev. D 100, 012004 (2019) 35. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 798, 134985 (2019) 36. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 795, 281–307 (2019) 37. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 774, 682–705 (2017) 38. M. Aaboud et al., Atlas collaboration. Eur. Phys. J. C 77(9), 646 (2017) 39. M. Aaboud et al., ATLAS Collaboration. JHEP 07, 107 (2017) 40. A.M. Sirunyan et al., CMS Collaboration. JHEP 10, 072 (2017) 41. M. Aaboud et al., Atlas collaboration. Phys. Rev. D 96(1), 012007 (2017) 42. O.J.P. Eboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, Phys. Rev. D 74, 073005 (2006) 43. M. Fabbrichesi, M. Pinamonti, A. Tonero, A. Urbano, Phys. Rev. D 93, 015004 (2016) 44. M. Aaboud et al., Atlas collaboration. Eur. Phys. J. C 77, 141 (2017) 45. C. Degrande et al., arXiv:1309.7452. (2013) 46. Y. Wen, H. Qu, D. Yang, Qs Yan, Q. Li, Y. Mao, JHEP 1503, 025 (2015) 47. H.Y. Bi, R.Y. Zhang, X.G. Wu, W.G. Ma, X.Z. Li, S. Owusu, Phys. Rev. D 95, 074020 (2017) 48. J.L.A. Fernandez et al., LHeC study group. J. Phys. G39, 075001 (2012) 49. J. L. A. Fernandez, et al., [LHeC Study Group], arXiv:1211.5102 50. O. Bruning, M. Klein, Mod. Phys. Lett. A 28, 1330011 (2013) 51. A Large Hadron electron Collider at CERN, web page with recent papers, talks and workshop documen- tation: http://cern.ch/lhec 52. P. Agostini, et al., [LHeC Collaboration and FCC-he Study Group], 53. Y.C. Acar, A.N. Akay, S. Beser, H. Karadeniz, U. Kaya, B.B. Oner, S. Sultansoy, Methods Phys. Res. A 871, 47–53 (2017) 54. A. Abada et al., FCC collaboration. Eur. Phys. J. C 79, 474 (2019) 55. A. Abada et al., FCC collaboration. Eur. Phys. J. Spec. Top. 228, 755 (2019) 56. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, Comput. Phys. Commun. 185, 2250 (2014) 57. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 06, 128 (2011) 58. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, Comput. Phys. Commun. 183, 1201 (2012) 59. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002) 60. A. M Sirunyan et al., CMS Collaboration, CMS PAS SMP-19-008 61. A. M Sirunyan et al., CMS Collaboration, CMS PAS SMP-18-007 62. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 809, 135710 (2020) 63. A.M. Sirunyan et al., CMS collaboration. Phys. Rev. D 100, 012004 (2019) 64. A. M Sirunyan et al., CMS Collaboration, CMS-SMP-20-001, CERN-EP-2020-127 65. R. D. Ballet al.[NNPDF Collaboration], Nucl. Phys. B877, 290 (2013) [arXiv:1308.0598 [hep-ph]] 66. S. Carrazza [NNPDF Collaboration], PoS DIS2013, 279 (2013) [arXiv:1307.1131 [hep-ph]] 67. S. Carrazza [NNPDF Collaboration], 68. R. D. Ballet al.[NNPDF Collaboration], http://arxiv.org/abs/1410.8849[hep-pharXiv:1410.8849[hep-ph] 69. T. Sjöstrand, P. Skands, JHEP 0403, 053 (2004). https://doi.org/10.1088/1126-6708/2004/03/053 70. O.J.P. Eboli, M.C. Gonzalez-Gartr
dc.identifier.urihttps://hdl.handle.net/20.500.12418/13041
dc.description.abstractThe quartic gauge boson couplings that identify the strengths of the gauge boson self-interactions are exactly determined by the non-Abelian gauge nature of the Standard Model. The examination of these couplings at ep collisions with high center-of-mass energy and high integrated luminosity provides an important opportunity to test the validity of the Standard Model and the existence of new physics beyond the Standard Model. The quartic gauge boson couplings can contribute directly to multi-boson production at colliders. Therefore, we examine the potential of the process ep → νe W + W − j at the Large Hadron Electron Collider and the Future Circular Collider-hadron electron to study non-standard W W W W couplings in a model independent way by means of the effective Lagrangian + −approach. We present an investigation on measuring W W production in pure leptonic and semileptonic decay channels. In addition, we calculate the sensitivity limits at 95% f M0 f M1 f M7 f S0 f S1 f T 0 f T 1 fT 2 Confidence Level on the anomalous 4 , 4 , 4 , , , , and couplings 4 4 4 4 4obtained by dimension-8 operators through the process ep → νe W + W − j for the Large Hadron Electron Collider and the Future Circular Hadron Electron Collider’s different center- of-mass energies and integrated luminosities. Our results show that with the process ep → νe W + W − j at the Large Hadron Electron Collider and the Future Circular Collider-hadron electron the sensitivity estimated on the anomalous W W W W couplings can be importantly strengthened.tr
dc.language.isoengtr
dc.relation.isversionofhttps://doi.org/10.1140/epjp/s13360-021-01775-4tr
dc.rightsinfo:eu-repo/semantics/closedAccesstr
dc.subjectAnomalous couplings, LHeCtr
dc.titleAnalysis of the anomalous quartic W W W W couplings at the LHeC and the FCC-hetr
dc.typearticletr
dc.relation.journalEur. Phys. J. Plustr
dc.contributor.departmentFen Fakültesitr
dc.identifier.volume136tr
dc.identifier.endpage805tr
dc.identifier.startpage784tr
dc.relation.publicationcategoryUluslararası Hakemli Dergide Makale - Kurum Öğretim Elemanıtr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record