The Determination of Distinctive Single Nucleotide Polymorphism Sets for the Diagnosis of Behcet's Disease

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE Computer Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Behcet's Disease (BD) is a multi-system inflammatory disorder in which the etiology remains unclear. The most probable hypothesis is that genetic tendency and environmental factors play roles in the development of BD. In order to find the essential reasons, genetic changes on thousands of genes should be analyzed. Besides, there is a need for extra analysis to find out which genetic factor affects the disease. Machine learning approaches have high potential for extracting the knowledge from genomics and selecting the representative Single Nucleotide Polymorphisms (SNPs) as the most effective features for the clinical diagnosis process. In this study, we have attempted to identify representative SNPs using feature selection methods, incorporating biological information and aimed to develop a machine-learning model for diagnosing Behcet's disease. By combining biological information and machine learning classifiers, up to 99.64 percent accuracy of disease prediction is achieved using only 13,611 out of 311,459 SNPs. In addition, we revealed the SNPs that are most distinctive by performing repeated feature selection in cross-validation experiments.

Açıklama

Anahtar Kelimeler

Diseases, Feature extraction, Machine learning, Predictive models, Bioinformatics, Support vector machines, Radio frequency, Behcet's disease (BD), feature selection, machine learning, disease prediction, most informative SNPs

Kaynak

Ieee-Acm Transactions on Computational Biology and Bioinformatics

WoS Q Değeri

Q1

Scopus Q Değeri

Q2

Cilt

19

Sayı

3

Künye