Interfacial charge transfer in g-C3N4/FeVO4/AgBr nanocomposite for efficient photodegradation of tetracycline antibiotic and Victoria blue dye

dc.authoridDhull, Priya/0000-0002-6664-0241
dc.authorid, Dr. Sonu/0000-0002-4390-5075
dc.authoridKatin, Konstantin/0000-0003-0225-5712
dc.authoridPoonia, Komal/0000-0002-7081-1314
dc.authoridHussain, Chaudhery Mustansar/0000-0002-1964-4338
dc.contributor.authorDhull, Priya
dc.contributor.authorSonu, Sonu
dc.contributor.authorPoonia, Komal
dc.contributor.authorRaizada, Pankaj
dc.contributor.authorAhamad, Tansir
dc.contributor.authorKaya, Savas
dc.contributor.authorKatin, Konstantin
dc.date.accessioned2025-05-04T16:47:13Z
dc.date.available2025-05-04T16:47:13Z
dc.date.issued2025
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractThe study presents the fabrication and superior photoactivity of a ternary g-C3N4/FeVO4/AgBr heterojunction nanocomposite, synthesized via a chemical precipitation method for effective degradation of tetracycline (TC) and Victoria Blue (VB) dye under light illumination. The morphology and the crystal size of the synthesized nanocomposite were characterized by using FESEM and XRD and the calculated grain size (100.39 nm) is larger than the crystal size (48.14 nm) indicating strong interparticle bonding. The heterojunction design leverages dual S-scheme interfacial charge transfer, reducing electron-hole recombination as confirmed by optoelectronic and electrochemical techniques. The composite demonstrated superior performance, achieving 82.15% degradation of TC and 97.25% degradation of VB. The study highlights density functional theory (DFT) simulations and MottSchottky (MS) analysis, providing insight into the electronic structure, distribution of charge, and band alignments of the g-C3N4/FeVO4/AgBr nanocomposite. Electron spin resonance and radical scavenging experiments revealed holes and superoxide radicals as the primary species driving the degradation process. Furthermore, LCMS analysis provided insights into the degradation pathways, confirming the conversion of TC and VB into nontoxic byproducts. The photocatalytic stability was confirmed through five consecutive cycles with minimal disruption in both performance and morphology, demonstrating its potential for wastewater treatment applications. Consequently, this study illustrates how the collaborative interplay of dual S-scheme charge migration and silver plasmonic effects enhances the efficiency of the g-C3N4/FeVO4/AgBr nanocomposite, offering a novel and highly effective solution for the degradation of complex pollutants in environmental remediation.
dc.description.sponsorshipKing Saud University, Riyadh, Saudi Arabia [RSP2025R6]
dc.description.sponsorshipThe author (T. A.) thanks the Researchers Supporting Project number (RSP2025R6) , King Saud University, Riyadh, Saudi Arabia.
dc.identifier.doi10.1016/j.envres.2024.120656
dc.identifier.issn0013-9351
dc.identifier.issn1096-0953
dc.identifier.pmid39701345
dc.identifier.scopus2-s2.0-85212541155
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.envres.2024.120656
dc.identifier.urihttps://hdl.handle.net/20.500.12418/35531
dc.identifier.volume267
dc.identifier.wosWOS:001393808600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.ispartofEnvironmental Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250504
dc.subjectSurface plasmon resonance (SPR)
dc.subjectOptoelectronic properties
dc.subjectDual S -Scheme
dc.subjectPollutant degradation
dc.subjectInterfacial charge transfer
dc.titleInterfacial charge transfer in g-C3N4/FeVO4/AgBr nanocomposite for efficient photodegradation of tetracycline antibiotic and Victoria blue dye
dc.typeArticle

Dosyalar