ATPase inhibition by omeprazole reveals role of heat shock proteins on testicular torsion

dc.authoridSERT, YUSUF/0000-0001-8836-8667
dc.authoridTUTAR, Yusuf/0000-0003-2613-9644
dc.authoridGuney, Cengiz/0000-0001-9052-741X
dc.contributor.authorGuney, Cengiz
dc.contributor.authorCoskun, Kubra Acikalin
dc.contributor.authorTutar, Yusuf
dc.date.accessioned2024-10-26T18:09:42Z
dc.date.available2024-10-26T18:09:42Z
dc.date.issued2021
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractTesticular torsion leads ischaemic injury and generates reactive oxygen species. Reactive oxygen species triggers lipid peroxidation, protein degradation and DNA damage. These biochemical processes trigger tissue damage. Heat shock proteins (HSPs) are important in spermatogenesis, and this work elucidates role of HSPs at the testicular torsion-detorsion process. A proton-pump inhibitor, omeprazole, tested to reveal the drug's curative effect since HSP functions through ATP hydrolysis. Thirty-two male Wistar Albino rats were divided into four groups: sham, control, omeprazole and serum physiologic groups. Right testis was torsed, while left ones remained untorsed. Protein peroxidation, DNA damage and lipid hydroperoxide levels as well as HSP expression were measured. Further, the effects were visualised with histopathologic imaging. HSP expression increases at the torsed right testis compared to the contralateral testis. Although HSP70 and HSP90 help antioxidant enzymes to keep their native structure, their anti-apoptotic properties accelerate the tissue damage. Omeprazole a proton-pump inhibitor employed to impair electron transfer chain and to inhibit HSP ATPase function. Omeprazole effectively inhibits HSPs and alleviates lipid peroxidation and DNA damage levels both at molecular and at tissue level, and the drug has profound curative effect on testicular torsion recovery.
dc.description.sponsorship[CUBAP T-484]
dc.description.sponsorshipYusuf TUTAR, Grant/Award Number: TUBA-GEBIP; Cengiz Guney, Grant/Award Number: CUBAP T-484
dc.identifier.doi10.1111/and.13929
dc.identifier.issn0303-4569
dc.identifier.issn1439-0272
dc.identifier.issue2
dc.identifier.pmid33368442
dc.identifier.scopus2-s2.0-85097949184
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1111/and.13929
dc.identifier.urihttps://hdl.handle.net/20.500.12418/30241
dc.identifier.volume53
dc.identifier.wosWOS:000601124400001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofAndrologia
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectheat shock proteins
dc.subjectOmeprazole
dc.subjectROS
dc.subjecttesticular torsion
dc.titleATPase inhibition by omeprazole reveals role of heat shock proteins on testicular torsion
dc.typeArticle

Dosyalar