Synthesis, bioinformatics and biological evaluation of novel pyridine based on 8-hydroxyquinoline derivatives as antibacterial agents: DFT, molecular docking and ADME/T studies

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Y The present study aims to first explore the relationship between the chemical structure of the organic compounds (pyridine based on 8-hydroxyquinoline) and the antibacterial activities, as well as the impact of substituent effects on their antibacterial properties. These compounds were synthesized by efficient methods, and their structures confirmed by the spectral methods (IR, H-1 NMR, C-13 NMR and elemental analysis). The antibacterial activities of synthesized the compounds were checked with five Gram-positive and Gram-negative strains such as Enterobacter cloacae (ATCC29893),Escherichia coli (ATCC35218), Klebsiella pneumoniae (ATCC13883), Staphylococcus aureus (ATCC29213) and Acinetobacter baumannii (ATCC19606). The results of the antibacterial activities of four synthesized compounds were compared with three standard antibiotics [Penicillin G, Erythromycin and Norfloxacin (quinoline type)]. The minimum inhibitory concentrations (MICs) of active compounds were calculated and discussed. The chemical and biological activities of hydroxyquinoline derivatives were compared with theoretical methods. The chemical activities of hydroxyquinoline derivatives were contrasted with the important quantum chemical parameters using the HF/6-31++ g (d, p) basis sets. Besides, biological activities of hydroxyquinoline derivatives against cancer proteins that are respectively protein of the BRCT repeat region of breast cancer that is ID: 1JNX, crystal structure of liver cancer protein that is ID: 3WZE, and crystal structure of lung cancer protein that is ID: 5ZMA, were compared. ADME/T (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) analysis was studied for molecules with high biological activity to become efficient drugs in the future. (C) 2021 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Organic synthesis, Antibacterial activity, Molecular docking, DFT, ADME/T, MICs

Kaynak

Journal of Molecular Structure

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

1244

Sayı

Künye