Effects of non-resonant intense laser, electric and magnetic fields on exciton binding energy and absorption spectra in the Gaussian double quantum well

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The present study examines the impact of external fields, including electric, magnetic, and non-resonant high-frequency intense laser fields, on the binding energies of the heavy hole excitons and interband absorption in GaAs/AlxGa1-xAs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{GaAs}/{\text{Al}}_{x}{\text{Ga}}_{1-x}\text{As}$$\end{document} Gaussian-shaped double quantum well. The study also considers the role of structural parameters such as the well width and the well depth. The results obtained show that the geometrical shape of the structure and the applied external fields are very effective tools on the excitonic binding and excitonic absorption spectra. From the results obtained, it was observed that the band gap of semiconductor materials can be changed by changing the structure parameters along with the external fields in accordance with the purpose. This tunability enables the development of devices with optimized performance and new functionalities, driving innovation in various fields of technology.

Açıklama

Anahtar Kelimeler

Kaynak

European Physical Journal Plus

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

139

Sayı

9

Künye