Long term electricity load forecasting based on regional load model using optimization techniques: A case study

dc.authorid0000-0002-3793-8786tr
dc.contributor.authorŞeker, Mustafa
dc.date.accessioned2023-06-23T05:44:59Z
dc.date.available2023-06-23T05:44:59Z
dc.date.issued2022tr
dc.departmentMühendislik Fakültesitr
dc.description.abstractLong-term load forecasting is a significant and complex topic in electric distribution systems. Forecasters is need to proper forecasting methodologies and smart solutions to minimize complexity. In this study, regional longterm load forecasting is presented, for Sivas province of Turkey, taking into account the development plan of the municipality, and subscriber profiles. Firstly, the municipality development plan is divided into regions of similar load characteristics. The load demand values of each region are defined mathematically using the S curve. The optimal parameter values of the S curve are calculated using meta-heuristic methods such as Genetic Algorithm (GA), Grey Wolf Optimization (GWO) and Harris Hawk Optimization (HHO). The obtained results are compared with the results of the econometrics-based (top-to-bottom) approach and actual consumer projection. The consumption values between 2004 and 2014 are used for parameter estimation of S curves. The consumption values obtained as the result of analysis the period between 2015 and 2018 were selected as test data. The result is shown that S curve-based regional demand forecast demonstrated more convenient results using the HHO algorithm with statistical values of RE = 1.3362, MAE = 1.5145, RMSE = 1.80385 and STD = 2.122 can be applied to the forecast regional electricity consumption. The proposed method is simple and can be easily applied to forecast the total consumption of the power load for a province any load forecasting region. The presented approach can be used to define the future projections of electricity distribution systems and determine the correct investment strategies.tr
dc.identifier.citationMustafa Şeker (2022) Long term electricity load forecasting based on regional load model using optimization techniques: A case study, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44:1, 21-43, DOI: 10.1080/15567036.2021.1945170tr
dc.identifier.doi10.1080/15567036.2021.1945170en_US
dc.identifier.endpage43tr
dc.identifier.issn1556-7036/ 1556-7230
dc.identifier.issue1tr
dc.identifier.scopus2-s2.0-85109643562en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage21tr
dc.identifier.urihttps://hdl.handle.net/20.500.12418/14044
dc.identifier.volume44tr
dc.identifier.wosWOS:000669353200001en_US
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor&Francistr
dc.relation.ispartofEnergy Sources, Part A: Recovery, Utilization, and Environmental Effectsen_US
dc.relation.publicationcategoryUluslararası Editör Denetimli Dergide Makaletr
dc.rightsinfo:eu-repo/semantics/restrictedAccesstr
dc.subjectElectrical energy demand forecasting; s curve; genetic algorithm (ga); Harris hawk optimization (hho); gray wolf optimization (gwo)tr
dc.titleLong term electricity load forecasting based on regional load model using optimization techniques: A case studyen_US
dc.typeAnimationen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Tam_metin.pdf
Boyut:
6.71 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: