Dual S-scheme Bi2MoO6/g-C3N4/Ag2MoO4 ternary heterojunction: Interfacial charge transfer, broadband spectrum, enhanced redox ability

dc.contributor.authorHasija, Vasudha
dc.contributor.authorKhan, Aftab Aslam Parwaz
dc.contributor.authorSonu
dc.contributor.authorKatin, Konstantin P.
dc.contributor.authorKaya, Savas
dc.contributor.authorSingh, Pardeep
dc.contributor.authorRaizada, Pankaj
dc.date.accessioned2024-10-26T18:09:18Z
dc.date.available2024-10-26T18:09:18Z
dc.date.issued2024
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractA ternary heterojunction bearing Bi2MoO6 and g-C3N4 is deposited on Ag2MoO4 for the photocatalytic degradation of sulfamethoxazole (SMX) antibiotic. Though the hydrothermal synthesis is non-directional, the dual Sscheme heterojunction formation is governed by the g-C3N4 serving as an electron bridge between Bi2MoO6 and Ag2MoO4. The potent strong interaction with both Bi2MoO6 and Ag2MoO4 facilitates high oxidation and reduction potential. The optimized Bi2MoO6/g-C3N4/Ag2MoO4 heterojunction with extended visible light absorption exhibits 96 % SMX degradation efficiency within 240 min of irradiations. The dual S-scheme configuration endows in-built electric field with vigorous driving force for charge carrier separation. The charge transfer mechanisms were validated by the photoluminescence results. Bi2MoO6/g-C3N4/Ag2MoO4 MoO 4 heterojunction demonstrates pseudo-first order kinetics with 0.143 kmin(-1) for SMX degradation and ternary photo-catalyst 83 % degraded SMX after successive five cycles. In the formed dual S-scheme Bi2MoO6/g-C3N4/Ag2MoO4 heterojunction, (OH)-O-center dot and center dot O-2(-) radicals were the main reactive species for SMX degradation. This research contributes to the formation of stable multicomponent photocatalytic systems.
dc.description.sponsorshipDeanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah [GPIP: 962-130-2024]; DSR
dc.description.sponsorshipThis Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (GPIP: 962-130-2024) . The authors, therefore, acknowledge with thanks DSR for technical and financial support.
dc.identifier.doi10.1016/j.solidstatesciences.2024.107693
dc.identifier.issn1293-2558
dc.identifier.issn1873-3085
dc.identifier.scopus2-s2.0-85204513966
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.solidstatesciences.2024.107693
dc.identifier.urihttps://hdl.handle.net/20.500.12418/30051
dc.identifier.volume157
dc.identifier.wosWOS:001322723500001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofSolid State Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSulfamethoxazole
dc.subjectDual S-Scheme
dc.subjectPhotocatalytic degradation
dc.subjectG-C3N4
dc.subjectBi2MoO6
dc.subjectAg2MoO4
dc.subjectSulfamethoxazole
dc.subjectDual S-Scheme
dc.subjectPhotocatalytic degradation
dc.titleDual S-scheme Bi2MoO6/g-C3N4/Ag2MoO4 ternary heterojunction: Interfacial charge transfer, broadband spectrum, enhanced redox ability
dc.typeArticle

Dosyalar