Electron-related nonlinear optical properties of cylindrical quantum dot with the Rosen-Morse axial potential
dc.authorid | Ungan, Fatih/0000-0003-3533-4150 | |
dc.authorid | Mora-Ramos, Miguel Eduardo/0000-0002-6232-9958 | |
dc.contributor.author | Ungan, F. | |
dc.contributor.author | Bahar, M. K. | |
dc.contributor.author | Pal, S. | |
dc.contributor.author | Mora-Ramos, M. E. | |
dc.date.accessioned | 2024-10-26T18:08:06Z | |
dc.date.available | 2024-10-26T18:08:06Z | |
dc.date.issued | 2020 | |
dc.department | Sivas Cumhuriyet Üniversitesi | |
dc.description.abstract | We present a theoretical study on the effects of intense laser field (ILF) and static electric field on the linear and nonlinear optical properties of a cylindrical quantum dot with Rosen-Morse axial potential under the framework of effective mass and parabolic band approximations. This study also takes into account the effects of the structure parameters (eta, V-1, and R). The analytical expressions of the linear, third-order nonlinear and total optical absorption coefficients (TOACs) and the relative refractive index changes (RRICs) are obtained by using the compact-density-matrix approach. The results of numerical calculations show that the resonant peak position of the TOACs and RRICs shifts towards lower energies and the magnitude of the peak increases with the effect of the static electric field and ILF. In addition, it is observed that while the resonant energies of the TOACs and RRICs of system shift towards the higher (lower) energies with the enhancement of eta, V-1, they decrease with the augmentation of R. Thus, the findings of this study show that the optical properties of the structure can be adjusted by changing the magnitude of structure parameters and applied external fields. | |
dc.description.sponsorship | Mexican CONACYT [A1-S-8218] | |
dc.description.sponsorship | MEMR is grateful to Universidad de Medellin for hospitality and support during their 2019-2020 sabbatical stay. He also acknowledges support from Mexican CONACYT through research Grant A1-S-8218. | |
dc.identifier.doi | 10.1088/1572-9494/ab8a1d | |
dc.identifier.issn | 0253-6102 | |
dc.identifier.issn | 1572-9494 | |
dc.identifier.issue | 7 | |
dc.identifier.scopus | 2-s2.0-85087348075 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1088/1572-9494/ab8a1d | |
dc.identifier.uri | https://hdl.handle.net/20.500.12418/29805 | |
dc.identifier.volume | 72 | |
dc.identifier.wos | WOS:000561736700002 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Iop Publishing Ltd | |
dc.relation.ispartof | Communications in Theoretical Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | cylindrical quantum dot | |
dc.subject | nonlinear optical response | |
dc.subject | intense laser field | |
dc.subject | electric field | |
dc.title | Electron-related nonlinear optical properties of cylindrical quantum dot with the Rosen-Morse axial potential | |
dc.type | Article |